Table of Contents -

Table of Contents

Macro Language Reference.............ccivivveeea 1

The GibbsCAM Macro Languageottt e e i e 3
About the Macro Function i e 3
About This Manual. o e 3
About The Macro Languageottt e 3

Language Descriptiont e 4
Variables 4
Flow Control 4
Functions, Operators & Expressions. i 5

Math . . 5
SIS . . oottt 6
ADBOUL SETINGS . . . oot 6
Commands With Strings.t i 7
Conditional Logic oot e 8
ComMMANAS . .ottt 9
Functions With String Return Values i i 9
User Input Commandsoouutiiii e 10
Dialog Creation Commands.uuuuutttitn e 10
(0] 00 2 =3 21O 15
Labels. . ..o e 15
Gibbs Part Manipulation Commands.uiiiini i 15
File Handling Commands.ottt e 15
Part Data e 16
Post Commands.o.tt e 16
Geometry Creation Commandsvetn ettt 17

A Note About The <Option> Argumentooiiiinninneenn.... 17
PoInts. . e 17

I U< 19
GArcles . ..o 20
Other Geometryottt e 23
Geometry Selection & Transformation Commands 24
Geometry Information Commands i, 26
Workgroup & Coordinate System Commands., 27
Solids Commandst 28
Tool Commandso.uiut i 30
ToolGroup Commandsut it 31
Machining Process Commandsuiiiiiiiiine i 32
Machining Operation CommandS.ouiueineneininenennn.. 34
View Commandsouut et e 35

- Table of Contents

Commands To Work With External Dataiiiann... 36
Text Files. . ..o 36
Excel Files o 37

Miscellaneous Commandsttt e 38

Debugging Macrosttt e 38

Parameters from GIbbSCAM ot e 40

Part Data 40

MTM Setup Data.o e 40

Tool Datao 40

Process Data 42
AlL Process TYPES . . o oottt e e e e e e e 42
Mill PrOCeSSeS . . o vt ottt e e e e e 42
Lathe ProCesSeso vttt e e e 45

Utility Process Data.ot 46

Operation Dataot e 47
All Operation TYPeS. . . . oo vttt e e e 47
Mill-Type Operationsoouuiiiint it 48
Lathe-Type Operationsttt e e 50

Post Data e 51

Using GibbSCAM MaCIOS . ..o .ottt ettt et e e ettt e 52

Configuring the Custom Macros Menu. it 52

Starting Macros oot e 54

Macro LanguageSamples55

Good Programming Practicesot 57
GibbsCAM Macro Samplesttt 57
Quick Samples.o e 57
User Input Example. 57
Geometry Creation Example. 57
Simple Geometry Selection and Rotation Example 58
Machining Example. 58
Advanced Geometry Create & Transform Example 58

Get WG List Infoo 61

Get CSListInfo 62
Calculate the Extents of Part Geometry. i, 63
Backup the Current Part 64
Create & Bag Solid Bodiest 65
Convert A Part Between Inch & Metric i, 67

Save Geometry Datatoa Text File......... i, 69

Run a Post Processort e 71

Loop Example. o 74
Known Values 74

ii

Table of Contents -

Executing the loop 74
Results of 1St 100P oot 75
Resultsof 2nd loop. 75
Results of the final loop.......... ... i 75
The Math. ... 76
Full Macro Examples 76
First Example - “Macro3”ot 76
Macro3z.mac Code.ttt 76
Macro3.dlgCode. e 78
The Results of the Macro. ... e 79
Second Example - “Macroz” i 81
Macroz.mac. 81
Macroz.dlg 83
MacrozRepeats.dlg. 85

T =) P - ¥

iii

MACRO LANGUAGE
REFERENCE

Macro Language Reference $-

CHAPTER 1: Macro Language Reference

THE GIBBSCAM MACRO LANGUAGE
ABOUT THE MACRO FUNCTION

GibbsCAM has a macro function that can be used to create geometry, import saved
processes, and create operations. The intended use of the GibbsCAM Macros function is for
family of parts programming. While you will likely find uses for the macros function
beyond programming family of parts setups, and more functionality will be added as time
goes on.

ABOUT THIS MANUAL

This document is a reference guide for the macro language and its use. This document is
designed with the assumption that you are proficient with GibbsCAM and have some
familiarity with programming macros or have general programming experience.

ABOUT THE MACRO LANGUAGE

GibbsCAM macros are text files which are interpreted at run-time. There is no compiler
stage for GibbsCAM macros and the language used is similar to Basic. All macro files must
be plain ASCII text files. You may use Notepad or the text editor of your choice for creating
macros. The macro files may be saved anywhere as they are run from a menu in GibbsCAM.
You add macros to the menu using the macro plug-in.

User input is available through a simple prompt for a single value, or a user defined dialog
(a .DLG file) that may contain input boxes, check boxes and radio buttons.

Following is some general information about the GibbsCAM Macros and the syntax of the
Mmacros.

* GibbsCAM Macros are not case dependent.

+ Tabs are not recognized, indenting must be done with spaces.

* There must be a comma and a space between arguments in a command.
* Angle values may be in either radians or degrees.

e Macros can call other macros.

$ Macro Language Reference

LANGUAGE DESCRIPTION
VARIABLES

GibbsCAM Macro variables do not need to be, but can be declared. If a variable is not
declared then it is automatically defined when it is used and is global. All numeric variables
are double precision floating point numbers (“floats”).

GLOBAL <VARIABLE NAME>, <VAR NAME> ..., <VAR NAME>: Global variables are available to
all macros from the first run in an instance. Global variables do not need to be declared
unless they are arrays. If a variable is not declared, i.e. specifically stated as “global” or
“local” then it is considered global.

GLOBAL XVAL(10), YVAL(5), ABC, DEF$

In this example of an array “XVAL” is an array with 10 values, “YVAL” holds 5 values,
“ABC” is a single numeric value and “DEFs” holds a single string of text characters.

LOCAL <VARIABLE NAME>, <VAR NAME> ... , <VAR NAME>: A local variable is only available
to the particular macro in which it was defined. Variables that are local to a macros must be
declared before they are used. When you exit the macro the variable is lost.

ARGS <VARIABLE NAME>, <VAR NAME> ... , <VAR NAME>: When you call another macro, you
can pass values or variables to that macro. Inside the macro that is called, you must declare
these values using the ARGS command. This will define variables that are local to the called
macro that will hold the values passed to that macro.

CALL “example.mac”, 1, ABC
Inside the “example.mac” macro:
ARGS NUM, COUNTER

In the “example.mac” macro, the local variable NUM will start with the value 1 (the first
value passed to it) and the local variable COUNTER will hold the value of the ABC
variable in the calling macro. When the “example.mac” macro is finished, it will pass
back the current value of COUNTER into the variable ABC.

FLOW CONTROL

GOTO <LABEL NAME>: Goto instructs the computer to jump to another point in the macro,
specified by a label name.

Macro Language Reference $-

CALL <MACRO FILENAME>: Call instructs the macro to refer to another macro, specified by
the name of the macro to be referenced.

FUNCTIONS, OPERATORS & EXPRESSIONS
Math

By default all trig functions work in radians, not degrees. You can change this during a
macro by using the command “degrees”, the command “radians” will switch the values back
to radians. In the description of the functions angled brackets (< >) indicate any valid
expression that evaluates to a number.

The GibbsCAM Macros use the standard mathematical operators, i.e. +, -, /, ¥, <, > and =.
Expressions follow the standard order of operations. Parentheses are optional but are
highly recommended to ensure calculation is correct and to maximize readability.
**: This operator will raise a value to a power.

a = X**3
<>: This operator specifies “not equal to”.

if dir<>1 then message "Rotate"

INT <NUMBER>: When this command is placed in front of a value or numeric variable the
number will be truncated to an integer.

SQRT <NUMBER>: Return the square root of the given number.

ABS <NUMBER>: Return the absolute value of the given number.

SIN <NUMBER>: Return the sine of the given number. By default the result is in radians.
x= rl * sin(a)

COS <NUMBER>: Return the cosine of the given number. By default the result is in radians.
x= rl * cos(a)

TAN <NUMBER>: Return the tangent of the given number. By default the result is in radians.
x= rl / tan(a)

ASIN <NUMBER>: Compute the arc sine of the given number. By default the result is in
radians.

$ Macro Language Reference

ACOS <NUMBER>: Compute the arc cosine of the given number. By default the result is in
radians.

ATAN <NUMBER>: Compute the arc tangent of the given number. By default the result is in
radians.

DEGREES: This command will switch all trig functions to work in degrees.

RADIANS: This command will switch all trig functions to work in radians.

Strings

About Strings

Concatenation

Most macro operators (-, *, /, etc) don't operate on strings. The exception is +, which acts
as a concatenation operator.

var$ "a little bit of text"
msg$ = "This string and " + var$

In this example the msg will be set to "This string and a little bit of text".

Embedding Variables
Variables can be embedded in strings at runtime by using the "%variable" syntax.

a =3

b=4

s=a*a+b*b

c = sqrt(s)

Message "The hypotenuse of a right triangle with sides of length %a and %b
is %c."

In this example the message will be set to "The hypotenuse of a right triangle
with sides of length 3 and 4 is 5."

Special Characters
Linebreaks in strings may be represented with the "\n" special character sequence.

msg$ = "this\nand that"
In this example the message will be set to:

this
and that

Macro Language Reference $-

Certain characters may not be included in string literals. At this point, the following
characters will cause errors: percent sign (%), double quote mark ("), and exclamation point

(n.

Commands With Strings
Commands that handle strings follow.

LEN <STRING>: Return the length of a string.
Ilen = len(“abc”)
ilen will be set to 3
Ilen = len(a$)
ilen will be set to the number of characters in the variable a$

LEFTS <STRING>, <NUMBER OF CHARACTERS>: Return the leftmost number of characters
from a string.

B$ = left$(“ABCDE,” 3)
Bs will be set to “ABC”

RIGHTS <STRING>, <NUMBER OF CHARACTERS>: Return the rightmost number of characters
from a string.

B$ = right$(“ABCDE,” 3)
Bs will be set to “CDE”

MID$ <STRING>, <FIRST CHARACTER>, <NUMBER OF CHARACTERS>: Return the characters
from the middle of a string.

B$ = mid$(“ABCDE,” 3, 2)

Bs$ will be set to “CD”
LTRIMS <STRING>: Return the string with any leading spaces removed
RTRIMS <STRING>: Return the string with any trailing spaces removed

TRIMS <STRING>: Return the string with any leading and trailing spaces removed

q)- Macro Language Reference

UCASES <STRING>: Return the string with any characters converted to upper case
LCASES <STRING>: Return the string with any characters converted to lower case

FMTS <STRING>, <FORMAT>: Return a numeric value, formatted as a text string. The format
may contain:

A digit
A digit if it is not a leading or trailing zero

A decimal point

+ A plus sign if the number is positive

B$ = fmt(123.45, ~0000.000”)

B$ will be set to “0123.450”

CONDITIONAL LOGIC

IF <EXPRESSION> THEN <EXPRESSION>: The if/then loop is fairly standard. A basic logic
command has the following syntax.

IF <value 1> <condition> <value 2> THEN <macro command>
Several examples of logic commands follow.

IF a =b THEN c = d

IF (a+2) > (b * cos(c+d/2)) THEN call macro2

IF abc <> 3 THEN goto labelil@

IF messages=1 THEN IF dir<>1 THEN message "Rotate"

FOR <VARIABLE> = <START> TO <END>, [STEP <INTEGER>]: For loops are very straight
forward. The STEP parameter has a default value of 1 so you do not need to declare the
STEP if the increment is 1. Several examples of FOR loops follow.

FOR'I =1 TO 10
A=A+1
NEXT I

FOR I=2 TO 6 STEP 2
FOR J = (I+1) TO 2
A=TI+73

Macro Language Reference 1$}

NEXT 3J
NEXT I

The first example increments “A” by 1 ten times. The second example has a FOR in a
FOR.

NEXT <VARIABLE NAME>: The next command modifies the FOR variable by the specified
step and executes the contents of the loop again.

CONTINUE: The continue command, when placed inside a loop, stops executing the current
iteration of a loop and returns to the top of the next iteration of the loop.

for i =1 to 3
message "This message will appear three times."
if i = 2 then continue
message "This message will appear twice, for i = 1 and 3; it is bypassed
for 2"
next i

COMMANDS

Commands that require arguments use a comma as a delimiter between each argument. In
the description of the commands angled brackets (< >) indicate any valid expression that
evaluates to a number. Square brackets ([]) indicate optional arguments. The pipe
character (|) indicates individual valid parameter entries such as “CW | CCW”, which
indicates clockwise or counter clockwise and “o | 1” which indicates either “true or false” or
“on or off”. Quite a few commands described here have the parameters “Left” and “Top”.
The “Left” parameter describes the distance from the left edge of GibbsCAM or the dialog
the parameter is in. The “Top” parameter describes the distance from the top edge of
GibbsCAM or the dialog the parameter is in.

Functions With String Return Values

Most macro commands have no return value or return a floating-point number. There are,
however, a number of commands which return a string. These functions are indicated by a
$ after the command name. These commands are documented in the “Commands With
Strings” section of this manual. These functions must be called with parentheses around
the parameters.

msg$ = " AB CD "
msg2$ = rtrim$(msg$)

In this example the variable msg2 will be set to "AB CD"

é- Macro Language Reference

User Input Commands

INPUT “PROMPT”, <VARIABLE>, <DEFAULT>: This command will display a dialog with an
input box for the user to enter a value and is called from within the macro file. Please note
that this command is different than the input command used within a dialog, which is
documented on page 11.

INPUT “Enter Width”, wl, 10

The results of this code is a dialog with an input box that prompts the user to input a
value with a default of “10”. This value will be assigned to the variable w1.

YESNO “PROMPT TEXT”, <VARIABLE>, [“CAPTION”]: This command calls a dalog with “Yes”
and “No” buttons. The variable gets set to “0” for “No” and “1” for “Yes”. If a caption is not
set then the top of the dialog will simply say “Custom Macro”.

YESNO “Do you want to do this?”, doitl, “You need to make a choice.”

This will display a dialog with the caption “You need to make a choice” and the message
“Do you want to do this?”. There will be YES and NO buttons. If you press “yes”, the
variable doit1 will be set to 1, if you press “no” or close the dialog, it will be set to 0.

DIALOG “FILENAME”: You can set up a technique to get input through a custom dialog.
When run this command will open the specified dialog.

DIALOG “MyMacro.dlg”

Dialog Creation Commands

As stated in the “dialog “filename”” section, you may collect input from a user by creating a
custom dialog. The dialog must be defined as a separate text file. A dialog text file must
start with the “dialog “caption”, <left>, <top>, <width>, <height>" command. A dialog may
then contain any combination of text labels, input boxes, check boxes and radio buttons.
There may be up to 10 each of the controls. A dialog must also contain an “Okay” and
“Cancel” button. A dialog may also contain an optional bitmap image.

DIALOG “CAPTION”, <LEFT>, <TOP>, <WIDTH>, <HEIGHT>: This command defines the left and
top position of a dialog followed by its width and height. This command must be the first
command in a dialog text file.

DIALOG "Diamond Insert" 30, 50, 530, 390
This creates a dialog called Diamond Insert that is 530x390 pixels which will open 30

pixels from the left and 50 pixels from the top of the GibbsCAM window.

10

Macro Language Reference $-

FONT <NAME>, <SIZE>: By default the Macros function uses the default system font for all
text in a macro. This command lets you specify the font used. If the font specified is not
installed on the user’s system then the macro will use the system default font.

FRAME <LEFT>, <TOP>, <WIDTH>, <HEIGHT>, “TEXT”: This command lets you place a frame
within a dialog that can include a text label. A frame is useful for organizing groups of
controls.

FRAME 20, 240, 250, 100 "Angle Definition"

This creates a frame within a dialog that has a label that says Angle Definition. The
frame is 250x100 pixels and is offset by 20 pixels from the left and 240 pixels from the
top of the dialog.

LABEL “TEXT”, <LEFT>, <TOP>, <WIDTH>, <HEIGHT>: This command lets you place a text label
in a dialog. You define the left and top position within the dialog, followed by the size of
the text, followed by what the text is. Each label you create is automatically given an
incrementing name, i.e. the first label in the dialog is referred to as “label1”, the second label
is “label2”, etc.

LABEL "Enter a value" 310, 39, 100, 24

This creates text that says Enter a value. The text is offset by 310 pixels from the left and
39 pixels from the top of the dialog. The text has a maximum area of 100x24 pixels. If the
text takes up more space than this it will be clipped.

INPUT <LEFT>, <TOP>, <WIDTH>, <HEIGHT>, “CAPTION”, <VARIABLE>, [<DEFAULT>]: This
command lets you place a text input box in a dialog. You define the left and top position
within the dialog, followed by the size of the box, followed by a variable name and,
optionally, a default value. Each input you create is automatically given an incrementing
name, i.e. the first input in the dialog is referred to as “input1”, the second input is “input2”,
etc.

INPUT 420, 35, 70, 24, “# of Degrees”, al, 10

This creates a text entry box that is offset by 420 pixels from the left and 35 pixels from
the top of the dialog. The box is 70x24 pixels. Whatever the user types into this box will
be assigned to the variable “a1”. This box has a default value of “10”.

CHECK <LEFT>, <TOP>, <WIDTH>, <HEIGHT>, “LABEL”, <VARIABLE NAME>, [<0|1>]: This

command lets you place a checkbox within a dialog. You define the left and top position
within the dialog, followed by the size of the checkbox, followed by the text that will
appear, followed by a variable name and lastly by the default state. “0” states that the
checkbox is off, “1” states that the checkbox is on. If a default setting is not used the

11

é- Macro Language Reference

checkbox s automatically set off. Each check box you create is automatically given an
incrementing name, i.e. the first check box in the dialog is referred to as “checki”, the
second check box is “check2”, etc.

CHECK 420, 35, 20, 20 “Ooh! Ooh! Pick me! Pick me!” checkl, 1

RADIO <LEFT>, <TOP>, <WIDTH>, <HEIGHT>, “LABEL”, <VAR NAME>, [<0|1>, <GROUP #>]: This
command lets you place a radio button within a dialog and you can group them together.
You define the left and top position within the dialog, followed by the size of the button,
followed by the text that will appear, followed by a variable name. Optionally you can
specify whether the item is off (0, which is the default) or on (1) and assign the button to a
group, which is any integer value. Each radio button you create is automatically given an
incrementing name, i.e. the first radio button in the dialog is referred to as “radio1”, the
second radio button is “radio2”, etc.

RADIO 40, 260, 200, 24 "Face Relief", optl, 1, 1
RADIO 40, 285, 200, 24 "Diameter Relief", opt2, 0, 1

This code creates two radio buttons, the first is selected the second is not. The buttons
are inset from the dialog by 40 pixels and are 260 and 285 pixels from the top of the
dialog. both occupy a 200x24 area, which includes label text. The first button sets the
variable “opt1” and the second button sets the variable “opt2”. Face Relief is enabled by
default and both radio buttons are in group 1. See the “ON_EVENT” command for an
example of toggling radio buttons.

IMAGE <LEFT>, <TOP>, <WIDTH>, <HEIGHT>, <FILENAME>: This command lets you place an
image within a dialog. You define the left and top position within the dialog, followed by
the size of the image, followed by the name of the image. The name may be simply the
name of the file or it may be the entire path to the file. The image must be a bitmap (.BMP)
file. Each image you create is automatically given an incrementing name, i.e. the first image
in the dialog is referred to as “image1”, the second image is “image2”, etc.

IMAGE 20, 20, 250, 200, "UpLeft.bmp"

This code places the image “UpLeft.bmp” 20 pixels from the left and 20 pixels from the
top of the dialog. The image is given an area of 250x200 pixels.

OK <LEFT>, <TOP>, <WIDTH>, <HEIGHT>, [“CAPTION”]: This command lets you place an
“Okay” button within a dialog. You define the left and top position within the dialog,
followed by the size of the button. The CAPTION option lets you change the text on the
button.

OK 420, 316, 70, 24

12

Macro Language Reference $-

This code creates an “OK” button that is 7ox24pixels. The button is 420 pixels from the
left and 316 pixels from the top of the dialog.

CANCEL <LEFT>, <TOP>, <WIDTH>, <HEIGHT>, [“CAPTION”]: This command lets you place a
“Cancel” button within a dialog. You define the left and top position within the dialog,
followed by the size of the button. The CAPTION option lets you change the text on the
button.

CANCEL 310, 316, 70, 24

This code creates an “Cancel” button that is 7ox24pixels. The button is 310 pixels from
the left and 316 pixels from the top of the dialog.

BUTTON <LEFT>, <TOP>, <WIDTH>, <HEIGHT>, “LABEL”, <VALUE>: This command lets you
place a custom button within a dialog. You define the left and top position within the
dialog, followed by the size of the button, followed by the text that will appear. This
command defines a variable called “button” that can be used to pass the value.

BUTTON 250, 100, 40, 20, “Do it” 1

This creates a 40x20 pixel button labelled “Do it” that sets a value of 1 when the button
is pressed.

ON_EVENT <CONTROL NAME>, <CONTROL NAME>, <“ENABLE” | “DISABLE” | “SHOW”>: This
command is used to control the enabling and disabling of controls. For example when a
radio button is selected the others should deselect. Following are two examples of this
command’s use. The first example illustrates displaying an image when a radio button is
selected. The second example shows the toggling action between radio buttons.

ON_EVENT radio3, image3, SHOW

ON_EVENT radiol, inputl, ENABLE
ON_EVENT radiol, input2, DISABLE
ON_EVENT radio2, inputl, DISABLE
ON_EVENT radio2, input2, ENABLE

We see two different uses of the on_event command. The first (“on_event radios,
image3, show”) will display image 3 when radio button 3 is clicked. The second example
shows interactivity of radio buttons. When radio button 1 is clicked “input1” will be
enabled and “input2” will be disabled. When radio button 2 is clicked “input1” will be
disabled and “input2” will be enabled.

DROPDOWN_NEW <DROPDOWN #>, <LEFT>, <TOP>, <WIDTH>, <HEIGHT>, <VARIABLE>: This
command lets you create a dropdown menu within a dialog. The arguments <left> and

13

é- Macro Language Reference

<top> specify the where the top left corner of the menu will be placed in the dialog. The
<height> argument is the total height of the menu when dropped down, which is different
than other uses <height>, therefore the value should be fairly large to accommodate
multiple entries in the menu. The <variable> argument sets the name the dropdown
menu’s value. You may define up to twenty menus in a dialog.

DROPDOWN_NEW 1, 20, 20, 250, 100, dropl

This creates dropdown menu #1 20 pixels in from the top and left of a dialog. The menu
is 250 pixels wide and 100 pixels tall when deployed. The selection will be assigned to
the variable dropl.

DROPDOWN_ADD <DROPDOWN #>, <CAPTION>, <VALUE>: This command puts an entry into
a dropdown menu.

DROPDOWN_ADD 1, "Create a Point", 10
DROPDOWN_ADD 1, "Create a Line", 20
DROPDOWN_ADD 1, "Create a Circle", 30

This dropdown menu has three entries. If the “Create a Circle” item is selected from the
menu, the variable is set to “30”.

DROPDOWN_VAL <DROPDOWN #>, <VALUE>: This is an optional command that lets you
specify a pre-selected entry in the dropdown list. If this command is not used then the
menu will automatically display the first item defined by “dropdown_add”.

DROPDOWN_VAL 1, 20
The dropdown we are defining will, by default, display the entry with the value “20”.

DROPDOWN_EXCEL <DROPDOWN #>, <RANGE NUMBER>: This command maps an Excel
range, which is set by using the “excel_get range” command. The “excel_get_range”
command is used in the macro which calls the dialog. See the Excel macro sample file for
an example of this command’s use.

LOAD_DEFAUTS: This command has no arguments. When the dialog is closed, it will save all
of the dialog values in a file that has the same name as the macro filename, but ending with
“_in.ini” or “_mm.ini” depending on whether the current units are inch or metric.

SAVE_DEFAULTS: This command has no arguments. It will set all of the dialog variables to

the values that they contained when the dialog was last used. The values will be read from
the file previously saved using the SAVE_DEFAULTS command.

14

Macro Language Reference $-

COMMENTS

I Comments are noted by a leading exclamation point. To make a multi-line comment be
sure to place an exclamation point at the start of each line. Comments can be placed in-line
with commands but anything following the exclamation point will not be read by the
macro.

RADIO 40, 260, 200, 24, "Face Relief", optl, 1 ! 1 = default

Here we see a radio button being defined. At the end of the line there is a comment.

LABELS

LABELS: A label is used as a pointer for references. A label is designated as a line of text with
a colon (:) at the start of the line.

if <value 1>=<value 1> goto option2

(...)

:option2 ! dia relief angle
al = 90-a2-a3

a4 = al+(a2/2)

Here we see a logic test and if the test is true the macro will go to “option2”. Further
down the macro we find “:option2” which is the label for that section of the code. There
is a comment to help us keep track of what the code does. The last two lines are the
actual code for optionz.

GIBBS PART MANIPULATION COMMANDS

File Handling Commands
NEW_PART: This command will start a new file. This command has no arguments.

OPEN_PART “FILENAME”: This command will open an existing file. If the file resides in the
same directory as the macro then the name does not need to be in quotes. Alternatively the
filename can be a variable.

open_part “c:\Gibbs Parts\My Cool Macro-generated Part.vnc”
SAVE_PART: This command will save the current part. This command has no arguments.
SAVE_PART_AS <“FILENAME”>: This command will save the current part with a new

filename specified or data from a variable. The name of the file must be specified within
quotation marks.

15

d)- Macro Language Reference

FILE_DIALOG_NEW <CAPTION>: This command creates a new Windows Common Dialog
with the given caption.

FILE_DIALOG_EXTENSION <DESCRIPTION>, <EXTENSION>: This command adds a value to the
filename filter part of the dialog box.

FILE_DIALOG_SHOW OPEN |SAVE <VARIABLE NAME>: This command shows the created
dialog in “Open” or “Save” mode.

FILE_DIALOG_NEW "Open GibbsCAM File"

FILE_DIALOG_EXTENSION "GibbsCAM Part Files (*.vnc)", "*.vnc"
FILE_DIALOG_EXTENSION "All Files (*.*)", " *"
FILE_DIALOG_SHOW OPEN, filename$

OPEN_PART filename$

Part Data

GET_PART_DATA <PARAMETER>, <VARIABLE NAME>: This command is used to get part
specific data. A list of the available parameters is provided in the section “Part Data” on

page 40.

SET_PART_DATA <PARAMETER>, <VALUE>: This command is used to set part specific data. A
list of the available parameters is provided in the section “Part Data” on page 40.

GET_SPINDLE_NUM <VARIABLE NAME>: This command is used to get the number of the
currently selected spindle.

SET_SPINDLE_NUM <SPINDLE NUMBER>: This command is used to set the number of the
currently selected spindle.

GET_MTM_DATA <PARAMETER>, <VARIABLE NAME>: This command is used to get part
specific data that is unique to MTM. A list of the available parameters is provided in the
section “MTM Setup Data” on page 4o.

SET_MTM_DATA <PARAMETER>, <VALUE>: This command is used to set part specific data
that is unique to MTM. A list of the available parameters is provided in the section “MTM
Setup Data” on page 40.

Post Commands

GET_POST_DATA <PARAMETER>, <VARIABLE NAME>: This command is used to get data from
the posting dialog. A list of the available parameters is provided in the section “Post Data”
on page 51.

16

Macro Language Reference i$>

SET_POST_DATA <PARAMETER>, <VALUE>: This command is used to set data in the posting
dialog. A list of the available parameters is provided in the section “Post Data” on page 51.

RUN_POST [<POST FILENAME>, <OUTPUT FILENAME>]: This command is used to run a post.

Geometry Creation Commands

The GibbsCAM Macro function has the ability to create geometry. When creating a point,
line or circle you should specify the feature’s number. These numbers are created within
the macro memory, not within GibbsCAM. This is done so that the feature may be selected.
The system allows for up to 100 points, 100 lines and 100 circles.

A Note About The <Option> Argument

Quite a few of the geometry creation commands have the <option> argument. This
argument is present in commands that can result in more than one solution, such as a line
tangent to a circle at a specific angle, which has two solutions. The <option> argument
provides for which solution will be chosen.

Each solution is calculated mathematically, so by trial and error you can see which one you
will need. For example, intersecting a line and circle to get a point will have 2 options.
option 1 will always be the first intersection as you look along the direction of the line.
Intersecting 2 circles will have 2 solutions. Option 1 will always be the same side of the line
from the center of circle 1 to the center of circle 2.

Points
POINT <X>, <Y>: This command will create a point at the given position.

POINT x1, yi
POINT 1@, 15

We see two different examples here. The first uses variables; a point will be created at
the position specified by variables from user input. The second example uses a hard-
coded value; a point will be created at x10 y15. The values are in part units.

CREATE_POINT <POINT NUMBER>: Points, lines and circles can be created internally in a
macro that are in memory but not drawn. These geometry features are used to calculate
geometry, e.g. so you can create a point at the intersection of a line and circle. This
command takes a point definition that is in memory and creates an actual point at that
location.

POINT_XY <POINT NUMBER>, <X>, <Y>: This command will create a point at the given
position.

17

d)- Macro Language Reference

POINT_CA <POINT NUMBER>, <CIRCLE>, <ANGLE>: This command will create a point on a
circle at an angle.

POINT_2L <POINT NUMBER>, <LINE>, <LINE>: This command will create a point at the
intersection of two lines.

POINT_LC <POINT NUMBER>, <LINE>, <CIRCLE>, <OPTION>: This command will create a point
at the intersection of a line and circle.

POINT_2C <POINT NUMBER>, <CIRCLE>, <CIRCLE>, <OPTION>: This command will create a
point at intersection of 2 circles.

POINT_2P <POINT NUMBER>, <POINT>, <POINT>: This command will create a point between
two specified points.

POINT_GET_DATA <POINT NUMBER>, <X>, <Y>: This command acquires the data for the
point specified.

point_get_data 10, xx, yy

This example shows us getting the X and Y coordinates for point #10. The coordinate
data is put into the variables xx and yy.

POINT_COPY <POINT NUMBER>, <NEW POINT NUMBER>: This command will create a copy of
the specified point. The copied point is given a number.

point_copy 1, 99
This example shows point 1 being duplicated and the new point being set as point 99.

POINT_TRANSLATE <POINT NUMBER>, <DX>, <DY>: This command will move the specified
point by an amount in X and Y.

point_translate 1, 3, -5
This example shows point 1 being moved by 3 part units in X and -5 part units in Y.

POINT_ROTATE <POINT NUMBER>, <XC>, <YC>, <ANGLE>: This command will rotate the
point about a specified location at an angle. Negative values are valid.

point_rotate 1, 0, 0, 45
point_rotate 2, -3, -3, -45

18

Macro Language Reference $-

This example shows point 1 being rotated about XoYo by 45 degrees and point 2 being
rotated about X-3Y-3 by -45 degrees.

POINT_MIRROR <POINT NUMBER>, <AXIS>, <VAL>: This command will reflect the specified
point across the specified axis at a particular value.

point_mirror 1, x, ©
point_mirror 2, y, 5

This example shows point 1 being reflected across the X axis and point 2 being reflected
across Y5, from its present position.

POINTS: This command takes no arguments This command lets you can create a group of
pre-selected points. Within brackets you define the various points in the group using any
combination of the point creation commands.

POINTS [

POINT 1, 2
POINT 3, 2
POINT 3, 5

]

After these commands there will be 3 points, [at (1,2), (3,2) and (3,5)] and they are all
selected. At this point you can load a drilling process to create a drilling operation.

Lines
LINE_2P <LINE NUMBER>, <POINT>, <POINT>: This command will create a line though 2
points.

line 2p 1, 3, 4
line_2p 2, varpl, varp2

The first example shows line #1 being created through point 3 and point 4. The second
example shows line #2 being created through points that are variables.

LINE_HP <LINE NUMBER>, <POINT>: This command will create a horizontal line though a
point.

line_hp 5, 1
This example shows horizontal line #5 being created through point #1.

LINE_VP <LINE NUMBER>, <POINT>: This command will create a vertical line though a
point.

19

q)- Macro Language Reference

line_vp 5, 1
This example shows vertical line #5 being created through point #1.

LINE_PA <LINE NUMBER>, <POINT>, <ANGLE>: This command will create a line though a
point at an angle.

line_pa 2, 1, 30
This example shows line #2 being created through point #1 at 30 degrees.

LINE_PC <LINE NUMBER>, <POINT>, <CIRCLE>, <OPTION>: This command will create a line
though a point tangent to a circle.

LINE_CA <LINE NUMBER>, <CIRCLE>, <ANGLE>, <OPTION>: This command will create a line
tangent to a circle at a specific angle.

LINE_2C <LINE NUMBER>, <CIRCLE>, <CIRCLE>, <OPTION>: This command will create a line
tangent to two circles.

LINE_LD <LINE NUMBER>, <LINE>, <DISTANCE>: This command will create a line offset from
another line at a specified distance.

LINE_COPY <LINE NUMBER>, <NEW LINE NUMBER>: This command will create a copy of the
specified line. The copied line is given a number.

line_copy 1, 99

This example shows line 1 being duplicated and the new line being set as line 99.
CREATE_LINE <LINE NUMBER>: Points, lines and circles can be created internally in a macro
that are in memory but not drawn. These geometry features are used to calculate geometry,

e.g. S0 you can create a point at the intersection of a line and circle. This command takes a
line definition that is in memory and creates an actual line at that location.

LINE <X1>, <Y1>, <X2>, <Y2>: This command has been deprecated. Use one of the other line
creation commands instead.

Circles
CIRCLE <XC>, <YC>, <RADIUS>: This command will create a circle with a given center point

and radius. Upon creation the circle is defined by CircleRef(+1).

CIRCLE cpx, cpy, radl

20

Macro Language Reference $-

CIRCLE x0, yo, 10

We see two different examples here. The first uses variables; a circle with a radius
defined by radi will be created with its center at cpx, cpy. These variables will be
determined at runtime from user input. The second example uses a hard-coded value; a
10 part unit radius circle will be created at the part origin.

CREATE_CIRCLE <CIRCLE NUMBER>: Points, lines and circles can be created internally in a
macro that are in memory but not drawn. These geometry features are used to calculate
geometry, e.g. so you can create a point at the intersection of a line and circle. This
command takes a circle definition that is in memory and creates an actual circle at that
location.

CIRCLE_CR <CIRCLE NUMBER>, <POINT #>, <RAD>: This command will create a circle using an
existing point for the center point with a specified radius.

CIRCLE_CP <CIRCLE NUMBER>, <POINT1>, <POINT1>: This command will create a circle using
two points, the first is the center point and the second specifies the radius.

CIRCLE_2P <CIRCLE NUMBER>, <POINT>, <POINT>: This command will create a circle using
two points two define the diameter.

CIRCLE_2PR <CIRCLE NUMBER>, <POINT>, <POINT>, <RAD>, <OPTION>: This command will
create a circle using two points that are on the radius with a stated radius value.

CIRCLE_2LR <CIRCLE NUMBER>, <LINE>, <LINE>, <RAD>, <OPTION>: This command will create
a circle with a specified radius tangent to two lines.

CIRCLE_3P <CIRCLE NUMBER>, <POINT>, <POINT>, <POINT>: This command will create a
circle through three points.

CIRCLE_PL <CIRCLE NUMBER>, <POINT>, <LINE>: This command will create a circle with the
specified point at the center, that is tangent to a line.

CIRCLE_PLR <CIRCLE NUMBER>, <POINT>, <LINE>, <RAD>, <OPTION>: This command will

create a circle with the specified point at the center, that is tangent to a line and has a
specified radius.

CIRCLE_PC <CIRCLE NUMBER>, <POINT>, <CIRCLE>: This command will create a circle with
the specified point at the center, that is tangent to a circle.

21

d)- Macro Language Reference

CIRCLE_PCR <CIRCLE NUMBER>, <POINT>, <CIRCLE>, <RAD>, <OPTION>: This command will
create a circle with the specified point at the center, that is tangent to another circle and
has a specified radius.

CIRCLE_LCR <CIRCLE NUMBER>, <LINE>, <CIRCLE>, <RAD>, <OPTION>: This command will
create a circle with a specified radius that is tangent to a line and a circle.

CIRCLE_2CR <CIRCLE NUMBER>, <CIRCLE>, <CIRCLE>, <RAD>, <OPTION>: This command will
create a circle with a specified radius that is tangent to two circles.

CIRCLE_GET_DATA <CIRCLE NUMBER>, <CX>, <CY>, <RAD>: This command acquires the data
for the circle specified.

circle_get_data 10, xx, yy, rr

This example shows us getting the X and Y coordinates and the radius value for circle
#10. The coordinate data is put into the variables xx, yy and rr.

CIRCLE_COPY <CIRCLE NUMBER>, <NEW CIRCLE NUMBER>: This command will create a copy
of the specified circle. The copied circle is given a number.

circle_copy 1, 99
This example shows circle 1 being duplicated and the new circle being set as circle 99.

CIRCLE_TRANSLATE <CIRCLE NUMBER>, <DX>, <DY>: This command will move the specified
circle by an amount in X and Y.

circle_translate 1, 3, -5
This example shows circle 1 being moved by 3 part units in X and -5 part units in Y.

CIRCLE_ROTATE <CIRCLE NUMBER>, <XC>, <YC>, <ANGLE>: This command will rotate the
circle about a specified location at an angle. Negative values are valid.

circle_rotate 1, 0, 0, 45
circle_rotate 2, -3, -3, -45

This example shows circle 1 being rotated about XoYo by 45 degrees and circle 2 being
rotated about X-3Y-3 by -45 degrees.

CIRCLE_MIRROR <CIRCLE NUMBER>, <AXIS>, <VAL>: This command will reflect the specified
circle across the specified axis at a particular value.

22

Macro Language Reference i$>

circle_mirror 1, x, ©
circle_mirror 2, y, 5

This example shows circle 1 being reflected across the X axis and circle 2 being reflected
across Y5, from its present position.

Other Geometry

CONTOUR []: The macro function lets you can create a contour comprised of lines and/or
circular arcs. Within brackets you define the starting position of the shape followed by the
lines and arcs that define the shape. The contour definition is terminated by a].

contour [

start ri, 0
line 11-r1, ©
line 11, h2-r2
line 12+r2, h2
line 12, hl-r2
line ri, hl
line o, ri

]

<REF> = CONTOURREF: Once the contour definition is terminated, the variable ContourRef
is set to the reference number of the contour.

myShape = ContourRef
START <X>, <Y>: This is the starting position of the contour you are defining.
START 0, ©
LINE <X>, <Y>: This is the starting position of a line in a contour shape.
LINE varxl, varyl
LINE 0,

We see two different examples here. The first uses variables; a line will be created that
starts at the intersection of varxi and varyi. These variables will be determined at
runtime from user input. The second example uses a hard-coded value; a line will be
created that starts at the part origin. The values are in part units.

ARC <XC>, <YC>, <X>, <Y>, “CW” | “CCW”: This command states the centerpoint, radius
defined by a position, and the direction of an arc.

ARC xc2, yc2, x2+tx2, y2+ty2, ccw
23

é- Macro Language Reference

ARC 9, 1, 9, 0, ccw

We see two different examples here. The first uses variables; a counter clockwise arc
whose centerpoint is the intersection of xc2, ycz, with an end point at (x2+tx2),
(y2+ty2). These variables will be determined at runtime from user input. The second
example uses a hard-coded value; a counter clockwise arc whose centerpoint is X9, Y1
with an end point at X9, Yo. The values are in part units.

FIT_CURVE <TOLERANCE>, <UNIFORM | CHORD_LEN | FOLEY | CENTRIPETAL>: This command
will create a curve between points using one of four modes, either uniform, chord length,
Foley’s or centripetal. See the Geometry Creation manual for more information on the
differences between these types of curves.

Geometry Selection & Transformation Commands
Geometry selection is controlled using the commands.

SELECT_GEO <REF NUM>: Select the given geometry feature, this will be added to the
currently selected geometry. Once selected, geometry may be transformed using the
Translate, Rotate, Scale or Mirror functions.

SELECT_GEO linel

SELECT_ALL_GEO: This command will select all geometry in the current workgroup. There
are no arguments for this command. Once selected, geometry may be transformed using
the Translate, Rotate, Scale or Mirror functions.

SELECT_SHAPE <REF>: This command will select a shape. The shape reference number may

be the number of any feature on that shape, the GibbsCAM Macro function will

automatically select all features that are connected to the given feature. Once selected,

geometry may be transformed using the Translate, Rotate, Scale or Mirror functions.
SELECT_SHAPE myShape

DESELECT_ALL_GEO: This command will deselect all geometry. This is typically used before

selecting shapes to ensure you do not get multiple/incorrect selections and at the end of a

macro. There are no arguments for this command.

DESELECT_GEO <REF NUM>: This command will deselect the given geometry feature.
DESELECT_GEO linel

SELECT_REF <REF>: This command has been deprecated by “select_geo <ref num>".

24

Macro Language Reference $-

GET_SELECTION_LIST <LIST NUMBER>: This command gets a list of all currently selected
geometry and saves that list for later use. For example you may have a matrix of points
selected. Creating a selection list lets you save this particular grouping for use later, such as
after creating more geometry. The “get_selection_list” command saves the current
selection. You may have up to 10 selection lists.

SET_SELECTION_LIST <LIST NUMBER>, [<OPTION>]: Select the geometry that was previously
saved in the given selection list number. If you set the option to 1, then any currently
selected geometry will remain selected, setting it © (the default) will deselect all geometry
before selecting the geometry in the list.

TRANSLATE_GEO <DX>, <DY>, [<DZ>, <# OF COPIES>]: This command will move the selected
geometry by the given amount. Numbers may be positive or negative. Optionally you may
also change the depth of the geometry and/or translate the geometry multiple times.

TRANSLATE_GEO 5, -2, 2

This command will move selected geometry by 5 part units in X, -2 units in Y and 2
units in Z. Typically this command will be used with variables whose values are set at
runtime.

ROTATE_GEO <XC>, <YC>, <ANGLE IN DEGREES>, [<# OF COPIES>]: This command will rotate
the selected geometry about the specified position by the specified number of degrees.
Numbers may be positive or negative. Optionally you may also rotate the geometry
multiple times.

ROTATE_GEO 5, @, 45

This command will rotate the selected geometry by 45 degrees about X5, Yo. Typically
this command will be used with variables whose values are set at runtime.

SCALE_GEO <FACTOR>: This command will scale the selected geometry.
SCALE_GEO 0.1
SCALE_GEO 25.4

The first example command will scale the selected geometry to 10% of its current size.
The second example will scale the selected geometry to 25.4 times its current size.
Typically this command will be used with variables whose values are set at runtime.

MIRROR_GEO <AXIS>, <AXIS VALUE>, [<# OF COPIES>]: This command will flip the selected
geometry at the specified point along a specific axis. The “axis” parameter for the mirror

25

$ Macro Language Reference

command is either X or Y. Optionally you may also create more than one copy of the
mirrored geometry.

MIRROR_GEO X, 5
MIRROR_GEO Y, ©

The first example command will flip the selected shape about X5. The second example
command will flip the geometry about Yo. Typically this command will be used with
variables whose values are set at runtime.

DELETE_GEO <GEO REF>: Delete a geometry feature.

DELETE_SHAPE <SHAPE REF>: Delete a complete shape.

Geometry Information Commands
These commands let you acquire data from a feature.

GET_NUM_FEAT_SELECTED <VARIABLE NAME>: Get the number of features currently
selected.

GET_SELECTED_GEO_REF <NUMBER>, <VARIABLE NAME>: Get the GibbsCAM feature
reference number for one of the currently selected features. <NUMBER> is a value between
1and the number of selected features.

GET_NUM_FEAT_SELECTED inum

FOR I =1 to inum
GET_SELECTED_GEO_REF i, iref
DEBUG iref

NEXT i

In the above example, assume that there were 3 features currently selected. The
variable inum would be set to 3 and the macro would loop 3 times displaying the
GibbsCAM feature number for the first selected feature, then the second selected
feature followed by the third.

GET_FEAT_TYPE <NUMBER>, <VARIABLE NAME>: Get the type of selected feature. The
variable will be set to:

1 = Point 2 = Line 3 = Circle
4 = Arc 5 = Curve

26

Macro Language Reference $-

GET_FEAT_START <GEO_REF>, <CS>, <XS>, <YS>, [<ZS>]: Get the start position data of the
selected feature. If <CS> is set to 0, the position is in the local feature CS, any other value
will return the positions in the world CS.

GET_FEAT_END <GEO REF>, <CS>, <XE>, <YE>, [<ZE>]: Get the end position data of the
selected feature.

GET_CIRCLE_DATA <GEO REF>, <CS>, <RAD>, <XC>, <YC>, [<ZC>]: Get the center position data
of the selected feature. If the feature is not a circle, the macro will stop processing.

GET_ARC_DATA <GEO REF>, <CS>, <RAD>, <DIR>, <XC>, <YC>, [<ZC>]: Get the center position
data of the selected feature. If the feature is not an arc, the macro will stop processing.

Workgroup & Coordinate System Commands

NEW_CS [XY, <NAME>, <X>, <Y>, <Z>] | [XZ, <NAME>, <X>, <Y>, <Z>] | [YZ , <NAME>, <X>, <Y>,
<Z>] | [3P, <NAME>, <X1>, <Y1>, <Z1>, <X2>, <Y2>, <Z2>, <X3>, <Y3>, <Z3>]: This command
creates a new coordinate system. There are four ways the CS may be defined. In each case,
you provide the name for the new CS as either text inside double quotes, or a string variable
that contains the CS name. GibbsCAM will allocate the CS number and this number will be
saved in the variable CsNumber.

1. Based on the XY plane [xy, <name>, <x>, <y>, <z>] This CS will be aligned to the
XY plane and its origin will be at the XYZ coordinates specified.

2. Based on the XZ plane [xz, <name>, <x>, <y>, <z>].This CS will be aligned to the
XZ plane and its origin will be at the XYZ coordinates specified.

3. Based on the YZ plane[yz, <name>, <x>, <y>, <z>]. This CS will be aligned to the
YZ plane and its origin will be at the XYZ coordinates specified.

4. Based on three points [3p, <name>, <x1>, <yl>, <zl>, <x2>, <y2>, <z2>,
<x3>, <y3>, <z3>]. This option allows you to create a CS that is aligned to three
arbitrary points. The new CS’s origin will be placed at the first point. The second point
defines any position along the H axis and the third point is any position along the V
axis.

SET_CS <CS NUMBER>: Select the given CS number.

GET_CS <VARIABLE NAME>: Get the number of the currently selected CS.

GET_CS_LIST: This command is one of three commands used to iterate through the CS list.
Once called it enables the use of the number of css and next_cs_number commands. See

27

q)- Macro Language Reference

the example macro “Get CS List Info” on page 62 for a good example of this and related
commands.

NUMBER_OF_CSS: This command is the second of three commands used to iterate through
the CS list.This command stores a variable for the number of coordinate systems in a part.

NEXT_CS_NUMBER: This command is the third of three commands used to iterate through
the CS list. This command iterates to the next CS.

GET_CS_NAME <CS NUMBER>, <VARIABLE>: This command is used to acquire the name of a
particular CS. The first variable is the CS number and the second variable is the name of the
CS.

SET_CS_NAME <CS NUMBER>, <VARIABLE NAME>: Get the name of the given CS number.

GET_GEO_CS <GEO REF>, <VARIABLE NAME>: Get the CS number associated with the given
feature number and return the CS number in the variable.

SET_GEO_CS <GEO REF>, <VALUE>: Change the CS of a geometry feature.

GET_GEO_AIR <GEO REF>, <VARIABLE NAME>: Get the Air/Wall attribute of a geometry
feature. If it is Air, the variable will be set to 1, if not it will be set to 0.

SET_GEO_AIR <GEO REF>, <VALUE>: Change the Air/Wall attribute of a geometry feature. 1
will set it to Air, o to Wall.

NEW_WG <WG NUMBER>: This command creates a new workgroup. Typically a variable
will be used for the workgroup number to increment to the next WG.

SET_WG <WG NUMBER>: Set the current Workgroup to the given workgroup number.
GET_WG <VARIABLE NAME>: Get the number of the currently selected Workgroup.

GET_WG_NAME <WG NUMBER>, <VARIABLE NAME>: Get the name of the given Workgroup
number.

GET_CS_SPINDLE <CS>, <VARIABLE>: This command retrieves the spindle number associated
with a given CS.

Solids Commands

EXTRUDE <ZS>, <ZE>: This command will create an extruded solid from a selected closed
shape. Define the starting and ending Z values, relative to the current coordinate system.
The order of the values does not matter, i.e. the +Z or the -Z can be first or last.

28

Macro Language Reference $-

extrude 10, -10
extrude -10, 10

The examples shown here will create identical solids, extruded by 10 part units.

REVOLVE H <VALUE>, <ANGLE> | V <VALUE>, <ANGLE>: This command will create a revolved
solid from selected geometry about either the horizontal or vertical axis. The <value>
parameter states the position about which the shape will be revolved and the <angle>
specifies how many degrees the revolution should be, with 360 being the maximum value.

revolve v, 0, 360
revolve h, 1, 180

These examples will create a shape that is revolved 360 degrees about the vertical axis
and a shape that is revolved 180 degrees about H+1.

TRANSLATE_SOLID <DX>, <DY>, [<DZ>, <NUM COPIES>]: This command will move the
selected solid by the given amount. Numbers may be positive or negative. Optionally you
may also move the solid along the depth axis and/or translate the solid multiple times.

ROTATE_SOLID <XC>, <YC>, <ANGLE>, [<NUM COPIES>]: This command will rotate the
selected solid about the specified position by the specified number of degrees. Numbers
may be positive or negative. Optionally you may also rotate the solid multiple times.

MIRROR_SOLID <AXIS>, <AXIS VALUE>, [<# OF COPIES>: This command will flip the reflect
the currently selected solid across the specified point along a specific axis. The “axis”
parameter for the mirror command is either X or Y. Optionally you may also make more
than one copy of the mirrored solid.

SCALE_SOLID <SCALE FACTOR>: This command will scale the selected solid.
SCALE_SOLID ©.1
SCALE_SOLID 25.4

The first example command will scale the selected solid to 10% of its current size. The
second example will scale the selected solid to 25.4 times its current size. Typically this
command will be used with variables whose values are set at runtime.

SOLID_UNION <SOLID REF>, <SOLID REF>: This command will perform the Union boolean
function on the two specified solids.

SOLID_SUBTRACT <SOLID REF>, <SOLID REF>: This command will perform the Subtract
boolean function on the two specified solids.

29

é- Macro Language Reference

SOLID_INTERSECT <SOLID REF>, <SOLID REF>: This command will perform the Intersection
boolean function on the two specified solids.

SELECT_SOLID <SOLID REF>: This command will select the specified solid body.

SELECT_ALL_SOLIDS: This command will select all solids, both in the workspace and the
Body Bag if it is open. This command has no arguments.

DELETE_SOLID <SOLID REF>: This command will deselect the specified solid body.

DESELECT_ALL_SOLIDS: This command will deselect all solids, both in the workspace and
the Body Bag if it is open. This command has no arguments.

GET_SOLID_BAGGED <SOLID REF>, <VARIABLE NAME>, <0 | 1>: This command will check if
the given solid is in our out of the body bag. 1 means that it is in the bag, © means that it is
not.

SET_SOLID_BAGGED <SOLID REF>, <0 | 1 >: This command will put a specified solid in the
Body Bag or take it out. “0” takes the body out of the Body Bag while “1” puts it in the Body
Bag.

Tool Commands

GET_TOOL_LIST [0 | 1]: This command creates a list of tools in the Tool list. This command
does not require any arguments, by default the it looks at the entire list (which is “9”).
Alternatively you can use “1” in the argument and the command will create a list only of
selected tools. Once the list is generated the macro sets the variables number_of_tools,
first_tool_number, last_tool_number and first_free_tool_number. This allows
the macro to determine how many tools there are, what the number of the first tool is and
the number of the first empty tile. Then you can use the variable next_tool_number. The
first time you use this it is set to the number of the first tool, the next time it is set to the
second tool and each time you use it the number is incremented to the next tool. So you
can use a FOR/NEXT loop to look at each tool.

GET_TOOL_LIST 1

This command creates a list in memory of the selected tools in the tool list. It also sets
four variables that let you look through the list of selected tools.

CREATE_MILL_TOOL <NUMBER>: This command creates a new mill-type tool. The tool is
created in the Tool list at the tile number specified

CREATE_LATHE_TOOL <NUMBER>: This command creates a new lathe-type tool. The tool is
created in the Tool list at the tile number specified

30

Macro Language Reference $-

DELETE_TOOL <NUMBER>: This command deletes the tool that occupies the specified
position in the Tool list.

NUMBER_OF_TOOLS: This command has no arguments.

GET_TOOL_STATUS <TOOL NUMBER>, <VARIABLE NAME>: This command determines the
state of a tool tile. A returned value of “0” means the tile position is empty, “1” means that
the tool is defined and valid while a value of “-1” means that not all of the data required to
define the tool has been defined.

GET_TOOL_DATA <TOOL NUMBER>, <PARAMETER>, <VARIABLE NAME>: This command is
used to get tool specific data. A list of the available parameters is provided in the section
“Tool Data” on page 40.

SET_TOOL_DATA <TOOL NUMBER>, <PARAMETER>, <VALUE>: This command is used to set
tool specific data. A list of the available parameters is provided in the section “Tool Data”
on page 40.

GET_TOOL_SELECTED <TOOL NUMBER>, <VARIABLE NAME>: This command is used to check
if a given tool number is currently defined. If it is the variable is set to 1, otherwise it will be
set to 9.

SELECT_TOOL <NUMBER>: This command selects the tool that occupies the specified
position in the Tool list.

SELECT_ALL_TOOLS: This command selects all tools in the tool list. This command has no
arguments.

DESELECT_TOOL <TOOL NUMBER>: This command deselects the tool that occupies the
specified position in the Tool list.

DESELECT_ALL_TOOLS: This command deselects all tools in the tool list. This command has
no arguments.

ToolGroup Commands

GET_TG_DATA <SPINDLE #>, <TOOLGROUP #>, <PARAMETER>, <VARIABLE NAME>: This
command is used to get the tool change position for a given toolgroup. The command
requires input for the spindle currently being referenced, the tool group number, a
parameter and a variable name to store the data. The valid parameters for this command
are tool_change_x, tool change_y and tool_change_z.

SET_TG_DATA <SPINDLE #>, <TOOLGROUP #>, <PARAMETER>, <VALUE>: This command is
used to set the tool change position for a given toolgroup. The command requires input for

31

é- Macro Language Reference

the spindle currently being referenced, the tool group number, a parameter and a value to
assign to the parameter. The valid parameters for this command are tool_change_x,
tool_change_y and tool_change_z.

Machining Process Commands

Processes are used to make operations. This set of commands lets you define and
manipulate process data and create one or more operations.

GET_PROC_LIST [0 | 1]: This command creates a list of processes in the Process list. This
command does not require any arguments, by default the it looks at the entire list (which is
“@”). Alternatively you can use “1” in the argument and the command will create a list only
of selected processes. Once the list is generated the macro sets the variables
number_of_procs, first_proc_number, last_proc_number and
first_free_proc_number. This allows the macro to determine how many processes
there are, what the number of the first process is and the number of the first empty tile.
Then you can use the variable next_proc_number. The first time you use this it is set to
the number of the first process, the next time it is set to the second process and each time
you use it it is incremented to the next process. So you can use a FOR/NEXT loop to look at
each process.

GET_PROC_LIST 1

This command creates a list in memory of the selected processes in the Process list. It also
sets four variables that let you look through the list of selected processes.

CREATE_PROC <NUMBER>: This command creates a process. You must follow this with
commands to set the process type and process values using SET_PROC_DATA commands

DELETE_PROC <PROCESS NUMBER>: This command deletes the process number specified
from the Process list.

GET_PROC_STATUS <PROCESS NUMBER>, <VARIABLE NAME>: This command checks the
status of a given process number. The variable will be set to o if the process tile is empty, 1 if
it contains a valid process definition and -1 if contains a partially complete process.

GET_PROC_DATA <PROCESS NUMBER>, <PARAMETER>, <VARIABLE NAME>: This command is
used to get process data. A list of the available parameters is provided in the section
“Process Data” on page 42.

SET_PROC_DATA <PROCESS NUMBER>, <PARAMETER>, <VALUE>: This command is used to

set process data. A list of the available parameters is provided in the section “Process Data”
on page 42.

32

Macro Language Reference $-

GET_UTIL_PROC_DATA <PROCESS NUMBER>, <PARAMETER>, <VARIABLE NAME>: This
command is used to get data from a utility process. A list of the available parameters is
provided in the section “Utility Process Data” on page 46.

SET_UTIL_PROC_DATA <PROCESS NUMBER>, <PARAMETER>, <VALUE>: This command is
used to set data for a utility process. A list of the available parameters is provided in the
section “Utility Process Data” on page 46.

CLEAR_PROC_LIST: This command will delete all of the processes in the Process list. This
command has no arguments.

LOAD_PROC <“FILENAME”>: This command enables a macro to load a stored/saved process.
The name may be simply the name of the file or it may be the entire path to the file. This
command deprecates “load_process”.

LOAD_PROC ““c:\Documents and Settings\wilg\Desktop\SavedProcess3.prc”

CALC_PROC: This command enables a macro to calculate toolpath and create one or more
operations. A process must have been set or loaded for this command to work. This is the
equivalent to clicking the “Do It” button. This command deprecates “calc_process”.

GET_PROC_SELECTED <PROCESS NUMBER>, <VARIABLE NAME>: This command is used to
check if a given process is currently selected. The variable will be set to 1 if it is, @ if not.

SELECT_PROC <PROCESS NUMBER>: This command will select the Process tile specified.

SELECT_ALL_PROCS: This command will select all of the processes in the Process list. This
command has no arguments.

DESELECT_PROC <PROCESS NUMBER>: This command will deselect the Process tile specified.

DESELECT_ALL_PROCS: This command will deselect all of the processes in the Process list.
This command has no arguments.

SET_MARKERS <0 | 1 | 2 (TOOL SIDE)>, <START FEAT>, <START DIST>, <END FEAT>, <END DIST>,
[<DIRECTION>, <SINGLE FEATURE>]: This command lets you specify how the machining
markers are set prior to creating toolpath.

<Tool side> values may be “0” (no offset), “1” (tool left) or “2” (tool right).

<Start feat> specifies which geometry feature to start on. Valid values are integers where “1”
is the first feature in the contour, “2” is the second feature, etc.

33

$~ Macro Language Reference

<Start dist> specifies the distance along the start feature at which to start machining. Valid
values are a percentage along the feature expressed as a decimal, where “-0.1” is 10% of the
feature length before the start of the feature, “0.5” is halfway along the feature and “0.9” is
90% of the way along the feature.

<End feat> specifies which geometry feature to end on. Valid values are integers where “1”
is the first feature in the contour, “2” is the second feature, etc.

<End dist> specifies the distance along the end feature at which to stop machining. Valid
values are a percentage along the feature expressed as a decimal, where “-0.1” will start
before the feature by 10% of the feature length, “0.5” is halfway along the feature and “1.1”
is 10% of the feature length past the end of the feature.

<Direction> is set to 1 to machine in the direction that the shape was created, o to machine
in the opposite direction.

<Single Feature> is set to 1if the shape is to be cut as a single feature shape.
SET_MARKERS 0, 1, -0.05, 4, 1.05 1 0

This example sets the machining markers to cut on center, starting off of the first
feature by 5% of the feature length. The 4th feature is the last to be cut and the toolpath
will finish off the end of the feature by 5% of its length. The markers are set to go all the
way around and cut in the direction the shape was made.

Machining Operation Commands
Operations contain toolpath data and are what gets rendered by and postprocessed
GibbsCAM. This set of commands lets you manipulate operation data.

GET_OP_LIST [0 | 1]: This command creates a list of operations in the Operations list. This
command does not require any arguments, by default the it looks at the entire list (which is
“@”). Alternatively you can use “1” in the argument and the command will create a list only
of selected processes. Once the list is generated the macro sets the variables
number_of_ops, first_op_number, last_op_number and first_free_op_number.
This allows the macro to determine how many operations there are, what the number of
the first operation is and the number of the first empty tile. Then you can use the variable
next_op_number. The first time you use this it is set to the number of the first operation,
the next time it is set to the second operation and each time you use it it is incremented to
the next operation. So you can use a FOR/NEXT loop to look at each operation.

GET_OP_LIST 1

34

Macro Language Reference $-

This command creates a list in memory of the selected operations in the Operations list. It
also sets four variables that let you look through the list of selected operations.

GET_OP_STATUS <NUMBER>, <VARIABLE NAME>: This command gets the status of the given
operation tile number. @ means that it is empty, 1 means that it contains a valid operation
and -1 means it is a partially completed operation tile.

DELETE_OP <NUMBER>: This command deletes the operation number specified from the
Operation list.

GET_OP_DATA <NUMBER>, <PARAMETER>, <VARIABLE NAME>: This command is used to get
data from an operation process. A list of the available parameters is provided in the section
“Operation Data” on page 47.

SET_OP_DATA <NUMBER>, <PARAMETER>, <VALUE>: This command is used to set data for
an operation process. A list of the available parameters is provided in the section
“Operation Data” on page 47.

GET_OP_SELECTED <NUMBER>, <VARIABLE NAME>: This command is used to check if a given
operation tile is currently selected. The variable will be set to 1if'it is, o if not.

SELECT_OP <NUMBER>: This command will select the Operation tile that is specified.

SELECT_ALL_OPS: This command will select all of the operations in the Operation List. This
command has no arguments.

DESELECT_OP <NUMBER>: This command will deselect the Operation tile that is specified.

DESELECT_ALL_OPS: This command will deselect all of the operations in the Operation List.
This command has no arguments.

DESELECT_OPS: This command has been deprecated by “deselect_all_ops”. Use that
command instead.

View Commands

SET_VIEW <TOP | FRONT | LEFT | RIGHT | BACK | ISO | HOME>: This command will set the
view of the part to one of the seven standard views, either top, front, left, right, back,
isometric or the home view for the current CS.

ZOOM_VIEW <(ZOOM FACTOR)>: This command will zoom in or out on the parts based on
the zoom factor entered. A value of “90” is unzoom, meaning the stock boundary will fit the
screen. The zoom factor must be a positive floating point value. A factor of “0.5” will set

35

é- Macro Language Reference

the view to half the current size, “1” is the current view size and “2” is double the current
size.

SHRINK_WRAP: This command will enact the Shrink Wrap function, causing the stock to
shrink or expand to the bounds of all geometry and solids. This command has no
arguments.

REDRAW: This command will force the screen to redraw. This is typically used at the end of
macro to ensure the user sees what has been done if the system does not force a redraw.

COMMANDS TO WORK WITH EXTERNAL DATA

The GibbsCAM Macros function can read and write to text files and can also extract data
from Microsoft Excel® spreadsheets.

RUN_EXE “APPLICATION FILENAME”, [“TEXT” | <VAR NAME>]: This command will launch the
specified application. The path to the application is required. The optional parameter is
simply passed to the EXE that is being run as a command line argument. The optional
parameter may be a string of text in quotes or a text variable.

So in the example you found, the result is the same as running notepad with a command
line argument that is the contents of the variable soutput_file. Instead of a variable, you
could just as easily have the second argument as a string of text in double quotes, (for
example run_exe "\Windows\System32\Notepad.exe", "c:\myfile.txt")

run_exe “c:\Program Files\Microsoft Office\Officel@\EXCEL.EXE”
run_exe "\Windows\System32\Notepad.exe", "c:\myfile.txt"
run_exe "\Windows\System32\Notepad.exe", output_file$

The first item above simply launches Excel. The second example launches Notepad and
opens a specific file. The third example launches Notepad and opens the file whose
name is stored in a variable. Please refer to the macro “Run a Post Processor” for a
working example of this.

Text Files

The macro language provides the ability to create, open, read from and write to text files.
Text files should be space delimited.

FILE_OPEN <FILE NUMBER>, “FILENAME”: This command will open a file for reading and

writing. A maximum of 10 files may be opened and the file number must be between 1 and
10.

36

Macro Language Reference $-

FILE_CLOSE <FILE NUMBER>: This command will close a file previously opened using the
FILE_OPEN command.

FILE_DELETE “FILENAME”: This command will delete the given filename.
FILE_READ_VARS <FILE NUMBER>, <VAR NAME 1>, ..., <VAR NAME 10>: This command will
read one line from the given file number and separate out the data from that line into a set

of values. Each value will be returned in the variable names used in this command.

FILE_WRITE_VARS <FILE NUMBER>, <VAR NAME 1>, ..., <VAR NAME 10>: This command will
write a line of text to a file, that line containing the values of the variables in this command.

FILE_READ_TEXT <FILE NUMBER>, <VARIABLE>: This command will read a line of text from a
file and save the contents in the string variable given in this command.

FILE_WRITE_TEXT <FILE NUMBER>, <TEXT>: This command will write a line of text to a file.

Excel Files

The macro language provides the ability to open an Excel spreadsheet, scan cells on any
given sheet in the XLS file and extract data from specific cells.

EXCEL_OPEN “FILENAME”: This command will open the specified Excel spreadsheet. The
path to the file is required.

excel open “c:\My Archive\Macros\point matrix.xls”
EXCEL_CLOSE: This command will close Excel. This command has no arguments.
EXCEL_SELECT_SHEET <SHEET NAME>: This command will select all of the data in the
specified sheet of an open Excel file. As a note, Excel files have three sheets by default,
labelled “Sheet1”, “Sheet2” and “Sheet3”, these may be renamed and the macro requires the
correct sheet name.
EXCEL_FIND_CELL <ROW1>, <COL1>, <ROW2>, <COL2>, <CELL TEXT>, <ROW VARIABLE>, <COL
VARIABLE>: This command finds a cell containing a particular value within a specified
range. This command matches the exact value only.

rowl, coli - upper-left coordinates of the search range

rowz, colz - lower-right coordinates of the search range

cell text - the text to search for

37

$ Macro Language Reference

row variable - output; row of found cell
col variable - output; column of found cell

EXCEL_GET_CELL <ROW>, <COL>, <VARIABLE NAME>: This command will extract data from a
particular cell. You must specify the row and column to identify the cell. The data in the
cell will be assigned to a given variable.

EXCEL_GET_CELL 3, e, data3

EXCEL_GET_RANGE <RANGE NUMBER>, <ROW 1>, <COL 1>, <ROW 2>, <COL 2>: This command
will extract data from a range of cells. You must specify the start cell (row and column)
followed by the cell at the end of the range.

EXCEL_GET_RANGE 1, 1, a, 1, j
EXCEL_GET_RANGE 2, 2, a, 11, j

The first example above gets the text from the first 10 cells (a-j) in the first column. The
second range example gets the text from a 10x10 cell range, rows 2-11 and columns a-j.

MISCELLANEOUS COMMANDS

SLEEP <TIME IN SECONDS>: This command will cause the macro to wait for a given amount
of time. This puts the macro to “sleep” for a few seconds, which gives the operating system
time to close files and clear buffers when you are creating and/or reading data from
external applications.

DEBUGGING MACROS

These commands are provided to assist with debugging.

MESSAGE “TEXT”, [“CAPTION”]: This command will display a message box with given text.
Optionally you may also include a caption on the message by including text in a second set
of quotation marks. This command is often used with a logic statement.

MESSAGE "Create contour", "Let’s Make Some Toolpath"

DEBUG <VARIABLE>, <VARIABLE> ... This command will display a message box with the
value of the given variable(s).

STOP “TEXT”, [<CAPTION>]: This command will stop the macro and display a dialog with the
text of your choosing. This command is often used with a logic statement for error
checking. The text must be contained within quotation marks. Optionally you may give the
message box a custom title.

38

Macro Language Reference $-

STOP “This is not used properly. RTFM.”

CHECK <PARAMETER>, <ERROR MSG TEXT>: This command can check to see if there is a part
currently open in GibbsCAM and what type of part it is. The command has three
parameters, “part_open”, “part_mill”, “part_turn”and “part_mtm”. In each case the
variable gets set to “1” if the case is true, so if a part is open the value is “1”. If the part type
and parameter do not match then the macro will stop and the error message will be

displayed.

PART_OPEN Stop if there is no part currently open
PART_MILL Stop if the current part is not MILL
PART_LATHE Stop if the current part is not LATHE
PART_MTM Stop if the current part is not MTM

TRACE <ON | OFF>: This command will display each macro in a message box. You will need
to press OK to continue processing the macro.

39

é- Macro Language Reference

PARAMETERS FROM GIBBSCAM

PART DATA

The following parameters are accessible by the get part data and set part_data

commands.

All Part Types
type
auto_clear
num_spindles
auto_clear

part_name (string variable)

mdd_file (string variable)
family (string variable)
Mill Parts

tool_change_x

stock_y1

stock_y2

Turn Parts
tool_change_x

stock_z1

MTM SETUP DATA

units

num_flows

cp1

graphic_part_dist_on
part_file (string variable)
comment (string variable)

hardness (string variable)

tool_change_y
stock_z1
stock_z2

tool_change_z
stock_z2

radius

num_tool_groups

clear_rad
graphic_part_dist_val
mdd_name (string variable)
alloy (string variable)

stock _x1
stock _x2

stock_rad

The following parameters are accessible by the get mtm_data and set mtm_data

commands.

General MTM Data
spindle_used
stock_rad

TOOL DATA

stock_z1
chuck width

stock_z2
chuck_part_len

The following parameters are accessible by the get_tool_data and set_tool_data commands.

All Tools

type
spindle_dir
tool_group_pos

material
id
tool_group

comment (this is a string variable)

40

offset
use_id
prime_spindle

Macro Language Reference {B

Mill Tools

mtool_type
mtool_options
mtool_radius

mtool _corner_rad
mtool_orientation
mtool_preset
mtool_tip_rad
mtool_top_rad

Lathe Tools

Itool_type
Itool_holder

Itool thread_id_od
Itool_cut_side
Itool_other

Itool thick
Itool_insert_angle
Itool_preset_pt_z
Itool_face_angle
Itool_tip_length
Itool_thread_insert_width
Itool_tip_centre_to_preset
Itool_holder_thickness
Itool_util_dia

LTOOL_ORIENTATION: This item has eight values, o through 7. The values
correspond to a position in the tool setup dialog as shown here.

LTOOL_TYPE: This item has 17 values, numbered 1 through 17. The values zt;
correspond to a position in the tool setup dialog as shown here. o

mtool _num_flutes
mtool_length
mtool_shank_rad
mtool_draft_angle
mtool_tip_angle
mtool_tc_shift
mtool_inner_top_corner_rad
holder_type

Itool_isize
Itool_thread_style
ltool thread_dir
Itool_face_up
Itool_holder_option
Itool_length
Itool_tip_offset
Itool_turret_shift_x
Itool_side_angle
Itool_thread_pitch
Itool_thread_edge_pos
ltool face_relief
Itool_b_axis
Itool_util_angle

05] 1057|909~
l a0 c I 550 I N
05 |07 |0a,
I’rnd.FI [sqr.S I tri. T
92 |05 |9
Itgn.'l.-.l' Ipent.F‘ A5 K
00— |0 @J
l rect. L || groowe lcutDFF
®— @é} ®—
thd. M lthlﬁ 35 W
CCd]

mtool_len_offset
mtool_flute_length
mtool_top_corner_rad
mtool _non_cut_dia
mtool_pitch_tpi
mtool_lead_tip
mtool_bottom_rad
holder_solid_ref

Itool_orientation
Itool_thread_type
ltool_offset
Itool_neg_side
Itool_size
Itool_tip_rad
Itool_preset_pt_x
lItool_turret_shift_z
Itool_tip_width
Itool_thread_flat_len
Itool_mid_angle
ltool _dia_relief
Itool_util_len

41

é- Macro Language Reference

MTOOL_ORIENTATION: This item has four values, o, 1, 2 and 3. The values (1]
correspond to a position in the tool setup dialog as shown here.

MTOOL_TYPE: This item has 20 values, numbered 1 through 20. The O[]
values correspond to a posmon in the tool setup dialog as shown here.

J 1 |07 |9s=
IFIghE Fin EM

Eall EMY|_ Shell
0z 01, (07,01,
l Face || Fly Cut \Keg Cut IThd miill
o7 o7 |07
I Cirill [I:ntrl:l ISthD \ Bare
®] |07 |OF |

IElElnre-[Tap IFE.Tap \

of |5 |o= e

IFIeamer [l:. Sink t:\ndul.'er\ Form

PROCESS DATA
All Process Types

The following parameters are accessible by the get_proc_data and set_proc_data
commands when referencing any type of part.

Standard Process Parameters

type mill_type lathe_type
tool_num prog_stop rapid_in
material_only spring_passes cut_type
repeats tool_change ¢cs_num
path_cs cre coolant

Mill Processes

The following parameters are accessible by the get proc_data and set_proc_data
commands when referencing a Mill-type part.

Milling Process Parameters

entry_clear exit_clear entry_line

exit_line entry_rad exit_rad

entry_feed contour_feed surf_z

tip_z z_step_wanted cut_width

stock boss_stock overhang

overlap open_clearance rpm

drill_feed prefer_subs cp1

curve_tol auto_entry_cp auto_entry_clear_rad

42

Macro Language Reference {B

Milling Process Parameters
auto_exit_cp

geo_rad

fm_clear

stepover_feed

min_cut

mfix_tol

auto_exit_clear rad
min_rad
fm_cut_width

clear feed

msurf clear
mzshift

Mill Drilling Process Parameters

drill_type
drill_dwell
drill_tap_percent

drill_pos_approach
drill_peck_amount
drill_bore_pulloff

Pocket & Contour Process Parameters

feed_connect
custom_cbset
round_corners
ignore_tools
fm_hplus
fm_before_zigzag
entry_type
hit_parallel
same_stroke
clear_feed_lock
past_stock
hit_flats

Pocket Entry Parameters

crc_offset
pattern_on
entry_perp
depth_first
fm_vplus
fm_back_and_forth
start_on_right
stay_clear
full_dia
scallop_feed_lock
pocket_type

axis_info
z_step
cut_angle
scallop_feed
mstock_tol

drill_clear_plane
drill_peck_clearance
drill_peck_retract

len_offset
pattern_index
exit_perp
fm_use_shape
fm_moveh
fm_type
retracts
cut_back
stepover_feed_lock
clear_periph
wall_mode

pocket_entry_ramp_type
pocket_entry_plunge_pt
pocket_entry_ramp_start_z
pocket_entry_ramp_wall_clear
pocket_entry_helix_slope
pocket_entry_helix_start_z
pocket_entry_helix_wall_clear
pocket_entry_helix_cp
pocket_entry_periph_slope
wall_angle

walli_top

walli_bottom

wall_shape_step

pocket_entry_helix_type
pocket_entry_ramp_slope
pocket_entry_ramp_max_cut
pocket_entry_ramp_angle
pocket_entry_helix_angle
pocket_entry_helix_max_cut
pocket_entry_helix_dia
pocket_entry_periph_start_z
wall_top

wall_bottom

walli_angle

wall_user_step
wall_ridge_height

43

é- Macro Language Reference

Surface Process Parameters
surface_type
surface_lace_cut_dir
surface_cfeed
surface_stepover
surface_desired_z
surface_stock_tol
surface_smooth_tol
Lace Cut Parameters
surface_cut_opt
surface_constrain
surface_clear_stock
surface_skip_flats

2 Curve Flow Parameters
curve_cut_dir
surface_flow_mach_dir

surface_flow travel around _mode

Intersection Parameters
surface_intersect_type
surface_cleanup_type
surface_max_cut_angle

surface_cut_type
surface_output_pref
surface_stock
surface_ridge_height
surface_const_faces_clear
surface_fix_tol
surface_arc_fit_tol

surface_offsets_surfs
surface_retract_option
surface_clear_stock_type
surface_normal_angle

surface flow

surface_back_and_forth
surface_efeed
surface_fix_clear
surface_cut_angle
surface_cut_tol
surface_constraint_tol
surface_spline_approx_tol

surface_one_pass
surface_stay_in_stock
surface_cut_over_edges
surface_step_cut_ratio

surface_flow_mach_z order

surface_cuts_type
surface_passes_per_side

Surface Process Entry Parameters

surface_entry_type
wall_top_to_bottom
wall_swept_pocket
m_use_adv_tol
md_vary_with_geo
md_process_load_hiz_feat
surface_stock

surface_entry_ramp_type
wall_same_dir
wall_swept_island
cut_side
md_vary_with_feat
surface_entry_plunge_pt

Contour Process Entry Parameters

surface_flow_cut_type

surface_passes_type
surface_corner_rad

wall_step
wall_same_dcep_side
s_use_adv_tol
md_from_tool
md_retract_level
rapid_clearance

contour_entry_ramp_type
contour_entry_ramp_slope
contour_entry_ramp_max_cut
contour_entry_helix_slope
contour_entry_helix_max_cut
Thread Milling Process Parameters
mthread_traverse_cp1
mthread_rapid_in
mthread_cut_dia

44

mthread_id od
mthread_start_thread
mthread_clear dia

contour_entry_helix_type
contour_entry_ramp_start_z
contour_entry_ramp_angle
contour_entry_helix_start_z
contour_entry_helix_dia

mthread_thread_dir
mthread_end_thread
mthread_pitch

Macro Language Reference {B

Thread Milling Process Parameters

mthread_feed

Lathe Processes

The following parameters are accessible by the get proc_data and set proc_data
commands when referencing a Mill-type part.

Lathe Process Parameters
lathe_prefer_canned

lathe clear id

Lathe Drilling Process Parameters

ldrill_entry
Idrill_clearance

Idrill_feed

Idrill_dwell
Idrill_retract
1drill_tip_z

Lathe Roughing Process Parameters

Irough_round_corners
Irough_entry_perp
Irough_css
Irough_avoid_air
Irough_zplus
Irough_spindle_dir
Irough_constant_step
Irough_constant_path
Irough_min_rad
Irough_stock_z
Irough_exit_rad
Irough_max_rpm
Irough_clearance
Irough_plunge_angle
Irough_peck
Irough_cut_z

Irough_cut_off
Irough_exit_perp
Irough_rapid_step
Irough_xplus
Irough_zminus
Irough_finish_last
Irough_peck
Irough_fixed_sp
Irough_stock
Irough_entry_line
Irough_exit_line
Irough_sfpm
Irough_turn_cut_width
Irough_cut_width
Irough_retract
Irough_shift cut_width

Lathe Threading Process Parameters

Ithread_style

Ithread_css
Ithread_last_cut
Ithread_num_spring_passes
Ithread_sfpm
Ithread_nominal
Ithread_minor_dia
Ithread_thread_angle

Ithread cut_dir
Ithread balanced in_ feed

Idrill_peck
ldrill_tap_percent
Idrill_surface z

Irough_cut_dir
Irough_rough_type
Irough_monotonic
Irough_xminus
Irough_autofin
Irough_center_out
Irough_plunge_type
Irough_num_passes
Irough_stock_x
Irough_entry_rad
Irough_rough_start
Irough_feed
Irough_ramp_angle
Irough_feed_percent
Irough_cut_x
Irough_cycle_sp

Ithread_cut_type
Ithread_alternate

Ithread_nominal_pitch_index Ithread_taper_index

Ithread_num_starts
Ithread_z_start
Ithread_pitch
Ithread_thread_height
Ithread_cut_depth

Ithread_max_rpm
Ithread_z_end
Ithread_major_dia
Ithread_taper
Ithread_last_cut

45

$- Macro Language Reference

Lathe Threading Process Parameters
Ithread_z_start_ext Ithread_z_end_ext Ithread_x_start_ext
Ithread_x_end_ext

UTILITY PROCESS DATA

The following parameters are accessible by the get_util proc_data and set_util_proc_data
commands.

Utility Process Names

load_spindle unload_spindle part_shift
sub_spindle_in sub_spindle_return parts_catcher_in
parts_catcher_out all_stop move_toolgroup
Load Spindle - Manual Chuck

spindle_num time

Load Spindle - Auto Chuck

spindle_num time

Load Spindle - Bar Feed

spindle_on forward spindle_speed
z_clearance X_position feedrate

initial face z
Load Spindle - Auto Bar Feed

flow_num spindle_on forward
spindle_speed feedrate feed_distance
Load Spindle - Bar Pull

z_clearance X_position feedrate
initial face z grip_z

Unload Spindle

spindle_num time

Part Shift - Bar Feed

spindle_on forward spindle_speed
z_clearance X_position feedrate
initial_face_z shift_distance

Part Shift - Bar Pull

z_clearance X_position feedrate
initial face z grip_z shift_distance
Part Shift - Bar Pull

spindle_on forward spindle_speed
feedrate shift_distance

46

Macro Language Reference {B

SubSpindle In

flow 1 flow 2 fromworkpiece
to_workpiece c_synched spindle_speed
forward sub_in_unload part_in_main
part_in_sub z_clearance z_grip

feedrate orientation

Please note that the options that are used for check boxes will only have a value of 0 or 1.

SubSpindle Return

spindle_on forward with_part
open_main_collet main_loaded spindle_speed
Parts Catcher In

spindle_num z_position time

Parts Catcher Out

spindle_num time spindle_unloaded
Move ToolGroup

spindle_num location x_home
x_value z_home z_value

cs control_point

All Stop

This Utility op has no variables
OPERATION DATA
All Operation Types

The following parameters are accessible by the get_op_data and set_op_data commands.

Type

mill_type lathe_type

All Operation Types

tool_num proc_group proc_id
proc_op wg_num cs_num
path_cs locks num_repeats
crc_dir crc_offset coolant
cut_type css crc_side

mach_engine
Comment String
op_start (this is a string variable) op_end (this is a string variable)

47

é- Macro Language Reference

Mill-Type Operations
The following parameters are accessible by the get_op_data and set_op_data commands
when referencing a mill-type operation.

All Milling Operations

entry_clear exit_clear entry feed
contour_feed len_offset wrap

wrap_dups prog_stop pocket_type
tool_group workpiece flow

spin_control wrap_start_angle wrap_dup_angle
cut_width stock boss_stock

rpms time length

css surf_stock

Mill Drilling Operations

drill_type drill_clear_plane drill_pos_approach
material_only rapid_in drill_clear_plane
drill_dwell drill_tap_percent drill_peck_clearance
drill_peck_amount drill_peck_retract drill_bore_pulloff
drill cb_start riz drill_cb_end_riz drill_clear_plane_loc_cs
Mill Pocket & Contour Operations

feed_connect crc_offset pattern_on
pattern_index round_corners entry_perp
exit_perp ignore_tools depth_first
fm_use_shape fm_hplus fm_vplus

fm_moveh zig_zag back forth

fm_type entry_type start_on_right
retracts hit_parallel stay_clear

cut_back same_stroke full_dia
stepover_feed_lock clear_feed_lock scallop_feed_lock
clear_periph hit_flats cp1

curve_tolerance auto_entry_cp auto_entry_clear_rad
auto_exit_cp auto_exit_clear_rad geo_rad

min_rad z_step fm_clear
fm_cut_width cut_angle stepover_feed
clear_feed scallop_feed min_cut

past_stock pocket_entry_plunge_point pocket_entry_ramp_slope

pocket_entry_ramp_start_z pocket_entry_ramp_max_cut pocket_entry_ramp_wall_clear
pocket_entry_ramp_angle pocket_entry_helix_slope pocket_entry_helix_angle
pocket_entry_helix_start_z pocket_entry_helix_max_cut pocket_entry_helix_wall_clear
pocket_entry_helix_dia pocket_entry_helix_cp pocket_entry_periph_start_z

48

Macro Language Reference {B

Mill Pocket & Contour Operations

pocket_entry_periph_slope

entry_rad
overhang
msurf clear
m_zshift

entry_line_len
exit_rad

overlap

msurf stock_tol

contour_entry_ramp_slop
contour_entry_ramp_max_cut contour_entry_ramp_angle

exit_line_len

z_step_wanted
open_clearance

mfixture_tol

contour_entry ramp_start_z
contour_entry_helix_slope

contour_entry_helix_start_z contour_entry_helix_max_cutcontour_entry_helix_dia
Mill Contour & Pocket Wall Operations

wall_step

wall_dcep_side

wall_top

wall_itop

wall_user_step

cut_side

wall_mode
md_from_tool
md_retract_level

Contour Entry Information
contour_entry_ramp_type
Pocket Entry Information
pocket_entry_ramp
Thread Milling
mthread_traverse_cp1
mthread_start_thread
mthread_clear_dia

wall_top_to_bottom
wall_swept_pocket
wall_ang

wall_iang
wall_shape_step
s_use_adv_tol
inter_op_override
md_vary_with_geo

wall_same_dir
wall_swept_island
wall_bot
wall_ibot
wall_ridge_height
m_use_adv_tol

util_type
md_vary_with_feat

contour_entry_helix_type prefer_subs

pocket_entry_helix_type
mthread_id_od

mthread_end_thread
mthread_pitch

mthread_thread_dir
mthread_cut_dia
mthread_feed

Surfacing Information - General

surface_type
surface_lace_cut_dir
surface_entry_plunge_pt
surface_ridge_height

surface_constraint _faces_clear

surface_constraint_tol
surface_spline_tol
surface_corner_rad

surface_back_forth
surrface_depth
surface_step_over
surface_desired_z
surface_fix_tol
surface_arc_fit_tol
surface_step_cut_ratio

surface_cut_type
surface_output_pref
rapid_clearance
surface_cut_angle
surface_stock_tol
surface_smooth_tol
surface_normal_angle
surface_max_cut_angle

Surfacing Information - Lace Cut

surface_cut_opt
surface_constrain
surface_clear_stock

surface_offset_surfs
surface_retract_opt
surface_clear_stock_type

surface_one_pass
surface_stay_in_stock
surface_cut_over_edges

49

é- Macro Language Reference

Surfacing Information - Lace Cut
surface_skip_flats

Surfacing Information - 2 Curve Flow
surface_curve_cut_dir

Surfacing Information - Surface Flow
sflow_mach_dir
sflow_travel_around_mode

sflow_mach_zorder
sflocut_type
Surfacing Information - Intersection

intersect_type intersect_cuts_type
intersect_cleanup_from intersect_passes_per_side

intersect_pass_type

Surfacing Entry Information
surface_entry_type
Lathe-Type Operations

The following parameters are accessible by the get_op_data and set_op_data commands

surface_entry_ramp_type

when referencing a lathe-type operation.

All Turning Operations
material_only_clearance
Iplunge_peck_amount
Iplunge_feed_percent
lathe_pattern_shift_point
lathe cut_width

depth

Lathe Threading
Ithread_balanced
Ithread_last_cut
Ithread_type

Lathe Roughing
lathe_rough_type
lathe_plunge_center_out
lathe_pat_shift_fixed_srt
lathe_no_drag
lathe_cut_other_side
Irough_xplus
Irough_zminus
Irough_constant_path
Irough_entry_rad
Irough_start

50

Iplunge_max_cut
Iplunge_peck_clearance
Iplunge_entry_type
lathe_max_rpm

cut_tol

od_id_face

Ithread_angle_alt
lathe_prefer_canned
lathe _cut_dir

lathe_pull_off wall
lathe_plunge_type
lathe_pat_shift_passes
lathe cut_off
Irough_round_corners
Irough_xminus
Irough_autofin
Irough_min_rad
Irough_exit_rad
Irough_cut_width

Iplunge_angle
Iplunge_peck_retract
lathe_pattern_shift cut
lathe_xz_stock

step

lathe_depth

Ithread_starts
lathe canned_autofin
num_spring_passes

lathe_plunge_cut_type
lathe_plunge_entry_type
lathe_square_corners
lathe od_id_face
Irough_exit_perp
Irough_zplus
Irough_spindle_dir
Irough_entry_line
Irough_exit_line
Irough_ramp_angle

Macro Language Reference {B

Lathe Threading
Ithread_stype
Ithread_angle
Ithread_pitch
Ithread_height_xr
Ithread_first_cut
Ithread_z_end

POST DATA

The following parameters
commands.

All Posting Data
start_prog_num
abs_moves
num_parts
inter_part_full_up
pref_header
pref_footer
num_spindles
part_spacing_z

Ithread_alternate
Ithread _nominal_xd
Ithread_slope
lthread _run_in
Ithread_last_cut
Ithread_major_dia

Ithread_nom_pitch_index
Ithread_tpi
Ithread_minor xd
Ithread_run_out
Ithread_z_start
lathe_surface_z

are accessible by the get_post_data and set_post_data

seq_from seq_by

comments op_stops
work_fixtures one_part_all_tools
minimize selected_ops
pref_sub pref_op
num_flows num_tool_groups

part_spacing_x
post_file (string variable)

part_spacing_y
output_file (string variable)

51

é- Macro Language Reference

USING GIBBSCAM MACROS

The macros function

can be found in the |

. Geometr Cleanl
Geometry section of the ! :
Plug-ins menu. The H5M 3 Create DHole
Configure option lets Lathe-MTM L GeaTools J
you tell the macro plug- Mach. Sim.-TMS 3 Custorm Macros Caonfigure
in where your macros Misc » Create Spiral Diamond Insert
iamand Inser
are stored. Any macro Posting * Create Tapered Thread Contour O
in i onkour <n
that the plug-in is aware Proficy? Sas . P
of will appear in the Cantaur Off
. Reporter L4
menu. Simply select a _ Macro 1
macro from the menu to Salids d

run the macro. Find Ops
Machine Info

Mirror Ops
Shio Position

Transform Toolpath

CONFIGURING THE CUSTOM MACROS MENU

The Custom Macros menu shows all of the macros that the system is aware of. You can add
to and customize these entries by selecting the Configure menu item.

Once the Custom Macros dialog is open you can add and organize the macros. To add a
macro simply select an empty field, enter a name you would like the macro to appear as
and enter the path to the macro file. You can use the Browse function to point to the file
you would like to add or you may type the path in manually. Once you have entered the
path click the Update button to save this information. Finally, click the OK button. This

52

Macro Language Reference $-

will close the Custom Macros dialog and the next time you launch GibbsCAM the macros
you added will be available.

Custom Macros le
1 Diamond Inzert C:%Program FileshGibbs GibbsCakd W 7. 9. 50wl macrozt DiamondlinzethDiamondl nger 23
2 Contour On C:\Documents and Settingshuwilg GIBES4DesktophM acraz\Diamaondl nzertyContaur_(W

3 |C0nt0uerf | | |[Browse...]
[Delete] ’ Update]
[Maove Up] ’ Mave Dawn]

You can avoid having to go through the process of entering the macros each time

you get a new version of GibbsCAM. The information is saved in the file “Macros.ini”

which is located in the GibbsCAM application data folder. You can simply copy this
T file to the new version’s folder.

p From here: C\Documents and Settings\All Users\Application
Data\Gibbs\GibbsCAM\8.0\plugins\data
To here: C:\Documents and Settings\All Users\Application

Data\Gibbs\GibbsCAM\8.1\plugins\data

Items in the list can be reorganized. Simply
select an entry and click the Move Up or Move
Down button as needed. Additionally, you can Cortaur On

Diarnond Ihzert

Configure
create a divider by simply putting a dash (-) in Conton O
an entry. This will help you organize groups of Diamond Insert
macros. Conkaur On
Macro 1 Zontour OFF
Macro 2 Macra 1
Macro 3 Macro 2
Macro 3

53

d)- Macro Language Reference

STARTING MACROS

Macros are accessed from the Plug-Ins
menu of GibbsCAM. See the Plug-Ins
Guide for information on adding macros
to the menu. Additionally a macro may be
automatically run when GibbsCAM is
launched wusing a command line
parameter. To wuse this the macro
filename must be specified as an absolute
path. The command may be run from the
command line interface, added to the
shortcut to GibbsCAM (see image to the
right) or added to a batch file.

-m "x:\path\to\macro.mac"

54

vB.0.35(w) Properties

| General| Shortcut |I:0mpatibilit_l,l || Securit_l,l|

% w5.0.35(w)

Target type: Application

Target location; 3.0.35(w)

Target: |]Wirtua|.e:<e" -m " \pathhtobmacrobmacro.mac'| |

Start in: |

Shartcut key: | Maone

Fiur: | Minimized
Conment: |
g nd T arggt... ange |can... dvanced,.

MACRO LANGUAGE
SAMPLES

Macro Language Samples ‘d}

CHAPTER 2: Macro Language Samples
GOOD PROGRAMMING PRACTICES

When you write a macro, remember that you may need to go back to it at a later date to fix
bugs or to modify the code. You may also want to look at old macros to reuse parts of the
code in other projects. It is therefore a good idea to take a little extra time to make your
code easier to read and understand by using the following simple rules:

* Use meaningful variable names

* Break up code with blank lines between blocks of commands
* Add comments to describe what you are doing

+ Indent code for loops to identify repeated code

e Add error checks to make sure the data is valid

GIBBSCAM MACRO SAMPLES

QUICK SAMPLES

User Input Example
An example of a dialog definition follows.

DIALOG 100,250,200,120

IMAGE 200, 30, 50, 50, “c:\macros\picl.bmp”
LABEL 30, 30, 80, 20, “Width”

LABEL 30, 60, 80, 20, “Height”

INPUT 120, 30, 60, 20, wl, 10

INPUT 120, 60, 60, 20, hl, 6

CANCEL 30, 90, 60, 20

OK 120, 90,60, 20

Geometry Creation Example
An example of a contour definition follows.

CONTOUR [
START 1, 2
LINE 1, 4
ARC 2, 4, 2, 5, CW
LINE 4, 5

57

‘d)- Macro Language Samples

ARC 4, 4, 5, 4, CW
LINE 5, 2
LINE 2, 2

]

Simple Geometry Selection and Rotation Example
An example of creating a shape and rotating it follows.

CONTOUR [
START x, y
LINE (x+10), y
LINE (x+10), (y+6)
LINE x, (y+6)
LINE x, vy
1
refnum = ContourRef
CLEAR_SELECT
SELECT_SHAPE refnum
ROTATE_GEO x, y, 30

Machining Example

As an example, we could follow the contour created in “Simple Geometry Selection and
Rotation Example” with the following:

LOAD_PROCESS “c:\macros\processl.prc”
CALC_PROCESS
SET_MARKERS 1, 1, 0.5, 1, 0.5

This will start and end half way along the first feature and cut with tool to the left.

Advanced Geometry Create & Transform Example

This example will create a simple shape then apply successive transformations to the
geometry.

al$ = "This macro will use the geometry transformations"
a2$ = "translate, rotate, mirror, scale and copy"
message "%al$\n%a2$"

! start a new part and set the stock size
new_part "Example.vnc"
set _part_data mdd_name, "VMill3a"

! 3 axis vertical mill
set_part_data units, 1

I inches

58

Macro Language Samples -@-

set part_data stock x1, -10
set part_data stock yl, -10
set part _data stock z1, -1
set part_data stock x2, 10
set part_data stock y2, 10
set part _data stock z2, 1

set view top
zoom_view 0@

! zoom full

message "Create a contour", "Geo Transform", 1
contour [

start 0, ©

line 5, ©

line 4, 2

line 4, 1

line 0, 1

line 0, ©

]

iref = ContourRef

! Start the transformations
message "Select the contour", "Geo Transform", 1

clear_select
select_shape iref
redraw
get selection_list 1
! save list of currently selected geometry

! Translate
message "Translate by X 3, Y 4", "Geo Transform", 1
translate geo 3, 4, 0
redraw
S
! Rotate
message "Rotate cw by 30 degrees", "Geo Transform", 1
rotate geo 0, 0, 30
redraw
|
! Mirror
message "Mirror in X, about Y 0", "Geo Transform", 1

59

-$- Macro Language Samples

60

mirror_geo x, 0
redraw

! Translate
message "Copy Translate by X 6, Y 0", "Geo Transform", 1
translate geo 6, 0, 0, 1
redraw

get selection_list 2
! save list of currently selected geometry
message "Select both shapes", "Geo Transform", 1

set _selection_list 1

! select the original shape
set_selection_list 2, 1

! add the copy

redraw
|
! Mirror
message "Copy Mirror in Y about Y 1.5", "Geo Transform", 1
mirror_geo y, 1.5, 1
redraw
| L
! Scale
message "Scale all geometry to half size", "Geo Transform",

select_all_geo
scale _geo 0.5
redraw

message "Finished", "Geo Transform"

1

Macro Language Samples d}

Get WG List Info

This example will create a list of all of the workgroups in the
current part. The macro then prompts the user to optionally Sl e —

add a new WG.
al$ = "This macro will get a list of all
WGs, "
a2%$ = "create a new WG and select it."

message "%al$\n%a2$"

check part_open, "You must have a part open
to run this macro"

get wg list

Mumber of Was =5

1 Base

2 Table & Rotary
IR BY Axis

4 7 fxis & Head
5 Workgroup

Add a new one 7

Yes] [

Mo

inum = number_of_wgs
if inum<l then stop "No WG found"
if inum>20 then inum = 20
! just display data for the first 20 workgroups
a$ = "Number of WGs = %inum\n"

for i=1 to inum
n = next_wg number
get _wg_name n, wg$

a$ = a%$ + "\n" + format$(n, "###0") + " " + wg$

next 1

a$ = a$ + "\n\nAdd a new one ?"
yesno a$, iyesno
if iyesno=0 then stop "Finished"

new_wg "Macro WG"
iwg = WgNumber
set_wg iwg
update_wg_window

a$ = "Created new WG, number " + format$(iwg,
WGIII

stop "Finished\n"+a$

" ###0 ") + n

= 'Macro

61

d)- Macro Language Samples

Get CS List Info

This example will create a list of all of the coordinate
systems in the current part including which spindle the CS is Custom Macros —

aligned to. The macro then prompts the user to optionally | | - _
add a new CS (which is hard coded in this example), that
will be the current CS at the end of the macro. 1 Z¥ plane : spindle 1
2wy plane ; spindle 1
. . . 3 HY backside plane : spindle 1
al$ = "This macro will get a list the CSs and 4 vZ plane : spindle 1
indicate" & Z¥ plane : spindle 2
a2$ = "which spindle number 1is associated | &¥Yplane:spinde2
with each CS." 7 HY backside plane y spindle 2
o 8 %¥Z plane : spindle 2
a3% = "Lastly you can create a new CS at the 9 User ©5 ¢ spindle 1
end of the macro."
message "%al$\n%a2%$\n%a3s$" Add & new C57
check part_open, "You must have a part open Yes][Mo
to run this macro."

get cs_list

inum = number_of_css
if inum<l then stop "No CS found"
if inum>20 then inum = 20

! just display data for the first 20
a$ = "Number of CSs = %inum\n"

for i=1 to inum
n = next_cs_number
get _cs_name n, cs$
get cs_spindle n, ispin

a$ = a%$ + "\n" + format$(n, "###0") + " " + cs$
a$ = a$ + " : spindle "+format$(ispin,"0")
next i

a$ = a$ + "\n\nAdd a new CS?"

! This section is for adding a new CS.
! Commenting out everything between here
! and the “stop” command will cause the
! macro to only generate a list of the CSs.
yesno a$, iyesno
if iyesno=0 then stop "Finished"

new cs 3P, "Macro CS", 0, 0, 0, 1, 0, 0, 0, 1, 1
ics = CsNumber

62

Macro Language Samples ‘d}

set _cs ics
update cs_window

a$ = "Created new CS, number " + format$(ics, "###0") + " = 'Macro
CSIH

stop "Finished\n"+a$

MACRO STOPPED

Finished
Created new C5, number 10 = '™acra C5'

Calculate the Extents of Part Geometry

This macro will calculate the extents (the min/max values) in X and Y of selected geometry
in a mill part and can optionally create geometry that bounds the extents.

al$ = "This macro will calculate the extents"
a2s$ "(min/max X and Y) of the selected geometry"

message "%al$\n%a2$"

check part_open, "You must have a part open to run this macro"
check part_mill, "This macro is not designed for turned parts"

global xmin, ymin, xmax,ymax ! these variables are used by all macros
global ics

Xxmin=99999
ymin=99999
xmax=-99999
ymax=-99999

! when we get the data for each feature, we can get the xyz values in either the
world cs or the cs local to each feature.
ics =1
! world cs (local ¢s would be zero)
D
! get the number of selected features
get num_feat selected inum
if inum<l then stop "No geometry selected"

-$- Macro Language Samples

! loop through all selected features and update the min/max xy data
according to each features xy data
for i=1 to inum
b
! get the feature reference number for the 'i'th selected feature
get_selected_geo_ref i, iref
o
! get the feature type for this feature
get feat type iref, itype
if itype=1 then call "Check Point Data.mac"
if itype=2 then call "Check Line Data.mac"
if itype=3 then call "Check Circle Data.mac"
if itype=4 then call "Check Arc_Data.mac"
next i

! display the results
xmin$=format$ (xmin, "####0 . O###") —
ymin$=format$ (ymin, "####0 . O###") Geometry Extents |5|

xmax$=format$ (xmax, "####0 . O###") i = 0,25
— n " In =,

ymax$=format$ (ymax, "####0 . O###") il

A Max =225
msg$="X Min = %xmin$\n" % Max = 3.75
msg$=msg$+"Y Min = %ymin$\n"
msg$=msg$+"X Max = %xmax$\n"
msg$=msg$+"X Max = %ymax$"

message msg$, "Geometry Extents"

! get the feature type for this feature
yesno "Draw a rectangle around the geometry ?", iyesno

if iyesno=0 then stop "Finished"

contour [
start xmin, ymin
line xmax, ymin
line xmax, ymax
line xmin, ymax
line xmin, ymin

]

redraw
stop "Finished"

64

Macro Language Samples -$-

Backup the Current Part

This example macro will backup the current part by creating a new file name based on
current file name.

al$ = "This macro will make a backup copy of the current"
a2%$ = "part by saving it under a filename which is the same"
a3$ = "as the current filename, but with '_backup' added to it."

! some variable strings are defined.
message "%al$\n%a2%$\n%a3s$"
! This defines a message that will open when the macro is run.
check part_open, "You must have a part open to run this macro"
! Error checking in case a part is not open.
get_part_data part_name, pname$
get part _data part_file, pfile$
! The name of the part and its path are assigned to strings.
ilen=len(pfile$)
I remove the /vnc from the end of the filename
fé=left$(pfile$,ilen-4)+" backup.vnc"
! then add "_backup.vnc" to it
a%$="0K to save current part as\n%f$"
yesno a$%$, iyesno
if iyesno=0 then stop "Backup not created"”
! The user is prompted to save the file or not.

Custom Macros

OF ta save current park as
[:hGibbsCaM FilesiUntitled 2_backop,wnc

L Yes J [Mo

message "Backup was created"
! A dialog opens letting the user know that the backup is done.
save _part_as f$
! save the current part as the original filename
! if we don’t do this now, using file > save will overwrite the backup file we
just saved
save part_as pfile$
stop "Finished"
! A dialog opens letting the user know that the macro is complete.

Create & Bag Solid Bodies

This sample will create 2 solids and put them into the body bag and then take one out. This
macro does not require a part to be open.

! We will first create a message that describes what will happen.

-$v Macro Language Samples

66

al$ = "This macro will create 2 solids and show"
a2%$ = "them going in and out of the body bag."
message "%al$\n%a2$"
! We will now make a new 3 axis vertical mill part that measures 4x3x1 inches.
new_part "Example.vnc"
set _part_data mdd_name, "VMill3a"
set part_data units, 1
set _part_data stock x1, O
set part_data stock yl, ©
set _part_data stock zl1l, ©
set _part_data stock x2, 4
set_part_data stock y2, 3
set part_data stock z2, 1
! The view is set to isometric and the part is zoomed to fit your screen.
set _view iso
zoom_view @
! We make a triangular shape and extrude it along the depth axis by +1 inch.
The geometry is deleted after the solid is made.

contour [
start 0, 0
line 2, 0
line 1, 3
line 0, 0

]
iref = ContourRef
deselect _all_geo
select_shape iref
redraw
extrude 0, 1
solrefl = SolidRef
deselect _all_geo
delete_shape iref
! A second triangular shape is made and extruded along the depth axis by +1
inch. The geometry is deleted after the solid is made.

contour [
start 2, 3
line 3, 0
line 4, 3
line 2, 3

]

iref = ContourRef
deselect _all_geo
deselect _all _solids
select _shape iref
extrude 0, 1
solref2 = SolidRef

Macro Language Samples -$-

deselect all _geo
delete shape iref
redraw

! We will now start moving the bodies into and out of the Body Bag.
message "Put the first solid in the bag", "Bag Solids", 1
set_solid bagged solrefl, 1
redraw

! We generate a message to show if the bodies are bagged or not.

message "Check the bagged state of the 2 solids", "Bag Solids", 1

get solid bagged solrefl, bagl
get solid bagged solref2, bag2
message "Solid 1 bagged = %bagl\nSolid 2 bagged = %bag2",
Solids", 1
! We will now switch the status of each body.

”Bag

message "Unbag the first solid and bag the second one", "Bag Solids",

1
set _solid bagged solrefl, 0
set _solid bagged solref2, 1
redraw
stop "Finished"

Convert A Part Between Inch & Metric
! change current part units from inch to metric

! or metric to inch, ie swap the current units

al$ = "This macro will change the units of the current part"
a2$ = "from inch to metric, or metric to inch, scaling the"
a3$ = "geometry and solids accordingly"

message "%al$\n%a2%$\n%a3s$"

check part_open, "You must have a part open to run this macro"

get part _data units, iunits
if junits=1 then goto inch

yesno "This part is Metric, Do you want to convert it to Inch
iyesno, "Inch Metric Macro"
if iyesno=0 then stop "Finished - no action taken"

I convert from metric to inch
scale = 1/25.4
iunits= 1

-$v Macro Language Samples

68

goto scale

I convert from metric to inch

sinch

scale = 25.4
iunits= 0
:scale

set part _data units, iunits

! change the part units
R,

! any solids will have been scaled by changing the part units,
! now scale the geometry

select_all_geo

scale_geo scale

yesno "Scale the stock ?", iyesno, "Inch Metric Macro"
if iyesno=0 then redraw
if iyesno=0 then stop "Finished - stock size not changed"

! get the current stock
get part_data stock_x1, x1
get part_data stock_yl, yl
get part_data stock_zl, zl
get part data stock x2, x2
get part data stock y2, y2
get part data stock z2, z2

! you would use these variables for a turned part
!get part_data stock_zl, z1
lget part_data stock z2, z2

lget part_data stock_rad, rr
| e

! change the current stock
set _part_data stock x1, xl*scale
set part_data stock yl, yl*scale
set part_data stock z1l, zl*scale
set _part_data stock x2, x2*scale
set part_data stock y2, y2*scale
set part_data stock z2, z2*scale

! you would use these variables for a turned part
!get part _data stock zl1l, z1

Macro Language Samples -@-

!get part _data stock z2, z2
!get part _data stock rad, rr

zoom_view 0@

message "Finished"

Save Geometry Data to a Text File

This macro looks at selected geometry and exports the geometric data to a text file. This
macro is a good example of manpulatnig files outside of GibbsCAM.

al$ = "This macro look at the selected geometry and"
a2$ = "print the data for that geometry to a text file,"
a3$ = "with the filename selected by the user."

message "%al$\n%a2%$\n%a3s$"

check part_open, "You must have a part open to run this macro"
check part _mill, "This macro is not designed for turned parts"
get num_feat selected inum

if inum<l then stop "No geometry selected"”

! create a file open dialog
file_dialog _new "Select output filename"
file _dialog_extension "Text files (*.txt)", "txt"
file_dialog_extension "All files (*.*)", "*"
file_dialog_show save, f$

! open the file on unit 1 for writing
filel open=0
file open 1, f$, write
if FileError<>0 then goto file error
filel_open=1

! loop through all selected features and update the min/max
! xy data according to each features xy data
! try setting fmt$ to any of the next 3
! to get different formatted numbers
fmt$ = "+~~~0.0~~"
! !output spaces in place of leading/trailing zeros
fmt$ = "+##H#0 . O##"
! do not output leading/trailing zeros
Ifmt$ = "+0000.000"

-@- Macro Language Samples

! output leading/trailing zeros
for i=1 to inum

! get the feature reference number for the 'i'th selected feature
get selected geo_ref i, iref
| e
! get the feature type for this feature
get feat type iref, itype
if itype=1 then goto label point
if itype=2 then goto label line
if itype=3 then goto label circle
if itype=4 then goto label_arc

continue

:label _point
get feat start iref, 1, xs, ys, zs

xs$ = format$(xs, fmt$)
ys$ = format$(ys, fmt$)
zs$ format$(zs, fmt$)

a$ = "Point X =%xs$ Y =%ys$ Z =%zs$"
goto label print

:label line
get feat start iref, 1, xs, ys, zs
get feat _end iref, 1, xe, ye, ze

xs$ = format$(xs, fmt$)
ys$ = format$(ys, fmt$)
zs$ = format$(zs, fmt$)
xe$ = format$(xe, fmt$)
ye$ = format$(ye, fmt$)
ze$ = format$(ze, fmt$)

a$ = "Line Xs=%xs$ Ys=%ys$ Zs=%zs$"
a$ = a$ + " Xe=%xe$ VYe=%ye} Ze=%ze$"
goto label print

:label _circle
get circle_data iref, 1, rad, xc, yc, zc

xc$ = format$(xs, fmt$)
yc$ = format$(ys, fmt$)
zc$ format$(zs, fmt$)

70

Macro Language Samples ‘d}

rr$ = format$(rad, fmt$)

a$ = "Circle Xc=%xs$ Yc=%ys$ Zc=%zs$

goto label print

:label_arc
get feat start iref, 1, xs, ys, zs
get feat end iref, 1, xe, ye, ze

get _arc_data iref, 1, rad, dir, xc, yc,

xc$ = format$(xc, fmt$)
yc$ = format$(yc, fmt$)
zc$ = format$(zc, fmt$)
xs$ = format$(xs, fmt$)
ys$ = format$(ys, fmt$)
zs$ = format$(zs, fmt$)
xe$ = format$(xe, fmt$)
ye$ = format$(ye, fmt$)
ze$ = format$(ze, fmt$)
rr$ = format$(rad, fmt$)

a%$="Arc CCw"

if dir=1 then a$ = "Arc CW "

a$ = a% + " Xc=%xc$ Yc=%yc$ Zc=%zc$
a$ = a$ + "\n Xs=%xs$ Ys=%ys$

a$ = a$ + " Xe=%xe$ VYe=%ye} Ze=%ze$"

goto label print

:label print
file write text 1, a$
if FileError<>0 then goto file error

next i

file close 1
if FileError<>0 then goto file error

stop "Finished"

:file_error
ierr=FileError
if file open=1 then file close 1
stop "File error, code = %FileError"

71

-$- Macro Language Samples

Run a Post Processor

This macro sets posting parameters, prompts the user for the post processor to be used and
runs the post. The user can choose to view the posted code at the end. This sample is a
good example of user and file interaction.

al$ = "This macro will prompt for a post, set some"

a2%$ = "post parameters and run the post to create code"
message "%al$\n%a2$"

check part_open, "You must have a part open to run this macro"

! create a file open dialog and get post filename
file_dialog new "Select Post"
file _dialog_extension "Post files (*.pst)", "pst"
file_dialog_show open, post file$

| e

! create a file save dialog and get code filename
file_dialog new "Post Output File"
file _dialog extension "All files (*.*)", "*"
file _dialog show open, output file$

| e

! get some post parameters
get_post_data, start_prog_num, post_start_prog_num
get post_data, seq_from, post_seq_from
get post_data, seq_by, post_seq_by

a$ = "Original Post Parameters\n"

b$ = "Start Program Number = " + format$(post start _prog_num,
"HAHHHAO")

a$ = a% + "\n" + b$

b$ = "Sequence From = " + format$(post_seq from, "#####0")

a$ = a% + "\n" + b$

b$ = "Sequence By = " + format$(post_seq_by, "###H#H#O")

a$ = a% + "\n" + b$

! change these post parameters
set post_data, start_prog num, 1234
set post_data, seq_ from, 12
set post_data, seq_ by, 15
|

! get them again, to show they have been changed

72

Macro Language Samples $-

get_post_data, start_prog_num, —
post_start _prog num Custom Macros X

get post data, seq from, post seq from o
get_post_data, seq_by, post seq_by Original Post Parameters
Skart Pragram Murmber = 1
b$ = "New Post Parameters\n" Sequence From = 1
a$ = a$ + "\n\n" + b$ Sequence By =1
b$ = "Start Program Number = " + Hew Post Paramesters
format$ (post_start prog num, "#H#H##H#O")
a$ = a$ + "\n" + b$ Start Program Mumber = 1234
b$ — "Sequence From = " + Sequence From = 12
format$ (post_seq from, "#####0") sequence By = 15
a$ = as + "\n" + b$ Ok to run the post?
b$ = "Sequence By = " + format$(post_seq by,
"HHHHHO")
a$ = a$ + "\n" + b$ s J [te
|

! run the post
a$ = a$ + "\n\nOK to run the post?"
yesno a$%$, iyesno
if ijyesno = 0 then stop "Stopped without running post"

set_post_data, post_file, post_file$
set post data, output file, output file$

run_post

message "Finished - output file = %output file$"
yesno "View the output ?", iyesno

if iyesno = 0 then stop "Finished"

run_exe "\Windows\System32\Notepad.exe", output file$

Custom Macros

Finished - output file = DihGibbsCaM FilestPOSTS\Fanuc 6l [PW] CO01, 16, Exk

73

d)- Macro Language Samples

Loop Example

Following is an example of how a "For/
Next Loop" (for i=1 to 3) variable works.
In the example, we will make a variable
loop to create a bolt-circle as shown to
the right. The bolt-circle will have a f1.3in
radius of 1.3 with 8 holes equally spaced.
The first hole will be located at 22.5°
The positive direction of rotation is ¢/
cw.

225
Known Values
* 13 =r1(radius).

- 8 =ni1(#ofholes).

+ 22.5°= a1 (angle of hole 1)
* 360/8 =45°

Executing the loop

The loop is executed with the following 10 lines of code: Note, the line numbers would not
be used in the macro.

1. aa = al
I 22.5°

2. da = (360/n1)
I 45°

3. points]|

! start creating a set of points

4. for i=1 to nl
! loop 8 times

5. xx = rl*cos(aa)
! x position of hole

6. yy = rlfgin(aa)
!y position of hole

7. point xx,yy
! points1to 8

8. aa = aa + da
! angle of next hole going ccw

9. next i
! increment loop count i

74

Macro Language Samples fb

10.]
! end creating set of points

Results of 1st loop
1. Variable aa starts as 0°. Variable a1 starts as 22.5°.

2. Variable da starts as 45° (360°/8).

3. Macro command to start creating a set of points.

4. Begin the loop, set the variable i to 1.

5. Set variable xx to equal 1.3*cos(22.5°) or xx1.2010.

6. Set variable yy to equal 1.3*sin(22.5°) or yy0.4975.

7. Create one point at X,Y location using values xx,yy.

8. Reset variable aa to equal previous aa + da or 22.5°+45°.

9. Add 1 to variable I, making it 2. Since 2 is less than or equal to 8 (n1), jump back to line 5.

Results of 2nd loop
Please note that loops 2-8 begin at line 5.

5. Set variable xx to equal 1.3*cos(67.5°) or xx0.4975.

6. Set variable yy to equal 1.3*sin(67.5°) or yy1.2010.

7. Create one point at X,Y location using values xx,yy.

8. Reset variable aa to equal previous aa + da or 67.5°+45°.

9. Add 1to [, making it 3. 3 is still <= 8, so jump back to line 5.

Results of the final loop
5. Set variable xx to equal 1.3*c0s(337.5°) or xx1.2010.

6. Set variable yy to equal 1.3*sin(337.5°) or yy-0.4975.
7. Create one point at X,Y location using values xx,yy.

8. Reset variable aa to equal previous aa + da or 337.5°+45°.

75

d)- Macro Language Samples

9. Add 1 to I, making it 9. Since 9 is greater than 8 (m1), finish the loop and continue to line
10.

10. End of set of points.

The Math
i1 = 000.0° + 022.5° = 022.5° = X1.2010 Y0.4975

i2 = 022.5° + 045.0° = 067.5° = X0.4975 y1.2010
i3 = 007.5° + 045.0° = 112.5° = X-0.4975 y1.2010
i4 = 112.5° + 045.0° = 157.5° = X-1.2010 Y0.4975
i5 =157.5° + 045.0° = 202.5° = X-1.2010 Y-0.4975
16 = 202.5° + 045.0° = 247.5° = X-0.4975 y-1.2010
17 = 247.5° + 045.0° = 292.5° = X0.4975 y-1.2010
i8 = 292.5° + 045.0° = 337.5° = X1.2010 y-0.4975

FULL MACRO EXAMPLES

This example is a fully working macro program. This program creates a dialog that accepts
user input to create a trapezoid, load a saved process file and create toolpath to machine
the shape. For this to work a macro file is created (“Macro3.mac) which references an
accompanying dialog file (“Macro3.dlg). The dialog references an image file that helps the
user visualize the shape. A saved process file is referenced by the macro file so that tool and
process data can be loaded.

First Example - “Macro3”

This is the actual code for the macro. If you do not have the sample you can copy the text
and save it. The green text denotes our comments to help you understand the code.

Macro3.mac Code

d1a10g "Macro3.dlg"
This calls the dialog file. The macro file is the basis of the program but the

user interacts with the dialog. Since this macro can’t do anything until it has
data fro the user the dialog must be called first. Looking at the dialog file at
the is point is recommended so that you become familiar with its
components. The code for “Macro3.dlg” can be found on page 78.

incline angle
included angle

76

Macro Language Samples -$v

ww = width
11 length
XS start point
ys = start point
! These are comments to help you keep track of what the variables represent.
A liberal use of comments is strongly recommended.

degrees ! switch all trig functions to degrees
Here we see an inline comment letting us know we’re switching value types.
d2 = (11 * tan(90-a2))
w2= (ww-d2-d2) ! Tlength of short end
! As the comment says, this calculates the length of the short end of the

trapezoid. The user inputs the length of the long end and the included angle
of the sides, the system calculates the short end.

if messages 1 then message "Create contour, without rotation”
If the user selected the “Show Messages
option a message will open that keeps the
user informed. Please note that the user
must click the “OK” button before the macro

continues.

Create contour, withouk rokation

contour [
start xs, ys
line xs+11, ys+d2
line xs+11, ys+d2+w2
line xs, ys+ww
line xs, ys

! The contour command creates the trapezoid from the user-supplied data.

iref = ContourRef
! The contour is assigned the variable name “iref”.

if messages=1 then message "select contour"
! If messages are on the user is told the system is selecting the shape it just
made.
clear_select
select_shape iref

redraw
! The macro first makes sure nothing is selected, then it selects “iref” and

finally redraws the screen.

if messages=1 then message "Rotate to inclination angle"
! If messages are on then the user is told the shape is going to be rotated.

rotate_geo xs,ys,al
redraw
! The shape is rotated about the start point by the user-supplied angle.

77

‘é- Macro Language Samples

if messages=1 then message "Set markers, load process and create ops"
! If messages are on then the user is told that toolpath is going to be created.

set markers 1, 1, 0.5, 1, 0.5
! The machining markers are set to cut on the left (“1”) and to start and end
halfway along the first feature (“1. 0.5”).

load _process "macro3.prc"
! The saved process file is loaded. Since only the file name is referenced the

process file must be in the same directory as the macro.
calc_process
clear_select

redraw
! The process is applied to the shape. The selection is cleared and the screen

is redrawn so the user can see the results.
if messages 1 then message "Finished"

! If messages are on then the user is told that the macros has done its job. The
macro is not set up to save the file. A good way to learn more about the
macros is to add a message warning the user about saving the file or even
adding code to this file that will save the part.

Macro3.dlg Code

This is the actual code for the macro dialog. If you do not have the sample you can copy the
text and save it. The green text denotes our comments to help you understand the code.

Example Macro 3

Izer Data

/'\ = position 1]
L % position 0
/ Rotation Angle (21] |15

Included Angle (2] |80

W Width 4

Al
N §
Length 4]

Show Messages

78

Macro Language Samples -$v

dialog "Example Macro 3",250,250,490,320
! Here we set the name of the dialog and its size.

! al = incline angle
! a2 = included angle
' ww = width

' 11 = length

! Xxs = position

|

ys = position
! These are comments to help you keep track of what the variables represent.
A liberal use of comments is strongly recommended.

image 20, 20, 200,200,"Macro3.bmp"
! The dialog’s image is placed.
frame 240, 16, 220,204, "User Data"
! The frame that contains the user input fields is placed. Frames are optional
but are very useful for organizing data.

label 260, 39, 100, 24, "X position"
label 260, 69, 100, 24, "Y position"
label 260, 99, 100, 24, "Rotation Angle (Al)"
label 260, 129, 100, 24, "Included Angle (A2)"
label 260, 159, 100, 24, "Width"
label 260, 189, 100, 24, "Length"
! The text labels for user input are placed.
input 370, 35, 70, 24, xs, ©
input 370, 65, 70, 24, ys, ©
input 370, 95, 70, 24, al, 15
input 370, 125, 70, 24, a2, 80
input 370, 155, 70, 24, ww, 4
input 370, 185, 70, 24, 11, 5
! The text input boxes are placed. Note the variable names and default values.

check 20, 240, 200, 24, "Show Messages", messages, 1
! An option is placed for the user. If this option is checked then the macro
will show a text message at certain points during the macro’s execution. The
messages let the user know what is going on. This sets the variable

“w._»

« ”»
messages” to true (“1

cancel 260, 240, 70, 24
! This creates a cancel button which is mandatory.

ok 370, 240, 70, 24
! This creates an okay button which is mandatory. That is all there is to the

dialog file. All the data collected here gets passed to the macro file.

The Results of the Macro
This macro requires an open file. We start with an empty 3-axis mill part.

79

q)- Macro Language Samples

The user inputs data.

Example Macro 3

N

Ilzer Data

pozitian

v pozition

W 1 Width
N
Length
Show Messages

Ratation Angle (411 (30

Included Angle [£2] |70

The user gets a series of messages.

8o

Custom Macros E' Custom Macros [z| Custom Macros [z|

Create contour, withouk rotation

select cankour

Rotate bo inclination angle

Custom Macros

Set markers, load process a

Custom Macros b__<|

nd create ops

Finished

Macro Language Samples ‘d}

The final results. The shape, tools. processes and operations are all created by the macro.

 |Untitled.vnc - GibbsCAM
File Edit WYiew Modify Processes Solids ‘Wizards ‘Window Plug-Ins WEDM Help

NE= |i||§| '|_+||:| B e G w2 (R Totel FrosessTime - 000000 gg 0 ‘rr.
oy — =

NI SRS

. 8 -
0500

NLost de

NIz (=gl

. &

N DE

N o=

N N
=] '

NES ™

= N

g N

g N

4 N
| &

g [~J

N =

Second Example - “Macro2”

Macro2.mac

As with the first example, this is the complete code for a
macro. This code is not as heavily commented, instead
the comments are more focused on items the first macro
does not have. This macro collects input from a user to
create a six-sided shape and will then repeat that shape
a number of times.

dialog "Macro2.dlg"

¢

L

s
5

! The file “Macro2.dlg” is opened to gazher the -shape-dimensions.

“Macroz2.dlg” can be found on page 83.
dialog "Macro2repeats.dlg"

! After data has been collected from
“MacrozRepeats.dlg” opens to determine the number of
repeats.“MacrozRepeats.dlg” can be found on page 8s5.

! 11 = long length
! 12 = short length
! hl = long height

“macroz.dlg” this dialog,

81

-$v Macro Language Samples

! h2 = short height
' rl = large fillet
' r2 = small fillet

! These are the variables collected by “macroz.dlg”.

Xs = X start
ys y start
dx = Xx spacing
dy = y spacing
nx number in x
ny number in y
! These are the variables collected by “macrozrepeats.dlg”.
if nx<2 then stop "Invalid number of parts in X (2 to 5)"
if nx>5 then stop "Invalid number of parts in X (2 to 5)"
! the macro can only create up to 5 shapes in an X direction. If less than 2 or
more than 5 parts are requested then the macro will stop.

if ny<2 then stop "Invalid number of parts in Y (2 to 4)"

if ny>4 then stop "Invalid number of parts in Y (2 to 4)"
! the macro can only create up to 4 shapes in a Y direction. If less than 2 or

more than 4 parts are requested then the macro will stop.

x1=xs
! The variable “x1” is set equal to the X start position the user specified.

for i=1 to nx
! acount is started

1=ys
’ %/ The variable “y1” is set equal to the Y start position the user specified.
for j=1 to ny
! acount is started
contour [
start x1+rl, yl1
line x1+11-r1, y1
arc x1+11-r1, yl+rl, x1+11, yl+rl, ccw
line x1+11, yl+h2-r2
arc x1+11-r2, yl+h2-r2, x1+11-r2, yl+h2, ccw
line x1+12+4r2, yl+h2
arc x1+12+r2, yl+h2+r2, x1+12, yl+h2+r2, cw
line x1+12, yl+hl-r2
arc x1+12-r2, yl+hl-r2, x1+12-r2, yl+hl, ccw
line x1+rl, yl+hl
arc xl+rl, yl+hl-rl, x1, yl+hl-rl, ccw
line x1, yl+rl
arc xl+rl, yl+rl, x1+rl, yl, ccw

I This code creates the shape from the user-input using simple math.

yl =yl + dy
! The variable “y1” is incremented by the Y offset

82

Macro Language Samples -$-

next j
! The next contour is created in Y. This will repeat a number of times equal to

« ”

ny’.
x1l = x1 + dx
' The variable “x1” is incremented by the x offset
next i
! The next contour is created in X. This will repeat a number of times equal to
“nx”. Basically, this code creates a number of shapes in Y, then steps over in
X and creates the same number of shapes. This will repeat until “nx” is
reached.

clear_select
! This deselects any item to ensure it is not accidentally deleted.

redraw
! This forces a redraw so the user can see the results of the macro.

Macro2.dlg
This code sets the dialog “Example Macro 2” which collects user input for defining the
shape that will be repeated.

Example Macro 2

Part D ata
L1 5
L2 3
H1 4
T Hz 2
H2
] R1 0E
. Rz 0.3
[Cancelar] L aE]

dialog "Example Macro 2",250,250,440,320
! The size and position of the dialog are set.
!' 11 = long length
! 12 = short length
! hl = long height
! h2 = short height
' rl = large fillet

-$v Macro Language Samples

84

' r2 =

XS
ys
dx =
dy =
nx
ny =

image

frame

label
label
label
label
label
label

input
input
input
input
input
input
I
cancel

ok
!

small fillet
These are simply comments about the variables and what they represent.

X start

=y start

X spacing

y spacing

number in X

number in y
These are simply comments about the variables and what they represent.
These variables are collected in “Macro2Reapeats.dlg”.

20, 20, 200,200, "Macro2.bmp"
The example graphic is positioned.

240, 16, 180,204, "Part Data"
A frame that contains the user input is created.

260, 39, 70, 24, "L1"

260, 69, 70, 24, "L2"

260, 99, 70, 24, "H1"

260, 129, 70, 24, "H2"

260, 159, 70, 24, "R1"

260, 189, 70, 24, "R2"
Text labels for the input fields are set.

340, 35, 70, 24, 11, 5

340, 65, 70, 24, 12, 3

340, 95, 70, 24, hl, 4

340, 125, 70, 24, h2, 2

340, 155, 70, 24, rl, 0.6

340, 185, 70, 24, r2, 0.3
Text entry boxes are created. A variable and default is set for each field.

260, 240, 70, 24

340, 240, 70, 24
The required “Cancel” and “OK” buttons are created. When this dialog is
closed the macro will continue to run which means Macroz2Repeats.dlg will
open.

Macro Language Samples ‘d}

Macro2Repeats.dlg

This code sets the second dialog “Example Macro 2” which collects user input for how the
shapes are to be offset.

image
frame

label
label
label
label
label
label
input
input
input
input

Example Macro 2

=
|4—'_q—r|
{;_JJ

— D —

Fepeatz
start 1
Y shart 1
kS B
Oy 4]
M i 4
Murm in ' 3
Cancelar] [OF.]

"Example Macro 2",250,250,440,320
The size and position of the dialog are set.

X < X

start
start
spacing

=y spacing
number in x

number in vy
These are simply comments about the variables and what they represent.

"Macro2repeats.bmp"

20, 20, 200,200,
240, 16, 180,204,

The example graphic
260, 39, 70, 24,
260, 69, 70, 24,
260, 99, 70, 24,
260, 129, 70, 24,
260, 159, 70, 24,
260, 189, 70, 24,
340, 35, 70, 24,
340, 65, 70, 24,
340, 95, 70, 24,
340, 125, 70, 24,

"Repeats”

and frame are positioned

"X start"
"Y start"
"X

"Dy

"Num

"Num

xs, 1
ys, 1
dx, 6
dy, 5

in X"
in Y"

-$r Macro Language Samples

input 340, 155, 70, 24, nx, 4
input 340, 185, 70, 24, ny, 3
! Text labels for the input fields and the accompanying text entry boxes are
created. A variable and default is set for each field.

cancel 260, 240, 70, 24

ok 340, 240, 70, 24
! The required “Cancel” and “OK” buttons are created. When this dialog is

closed with “OK” the macro will continue to run with values for all of the
variables.

86

Index -

Index

Symbols

%variable: 6

A

Absolute Value: 5
Air/Wall geometry: 28
arc command: 23

Arc Cosine: 6

Arc Sine: 5

Arc Tangent: 6

Args: 4

Arrays: 4

B

button command: 13

C

calc_proc command: 33
calc_process command: 33, 78
Call function: 5
cancel button command: 13, 79
check command: 38
check(box) command: 11, 79
Circle commands

circle: 20

circle 2cr: 22

circle_2lr: 21

circle_2p: 21

circle_2pr: 21

circle_3p: 21

circle_copy: 22

circle_cp: 21

circle_cr: 21

circle_get_data: 22

circle_ler: 22

circle_mirror: 22

circle_pc: 21
circle_pcr: 22
circle_pl: 21
circle_plr: 21
circle_rotate: 22
circle_translate: 22
create_circle: 21
clear_select command: 77
Comments: 15, 76
Concatenation: 6
Continue statements: 9
Contour
example of defining: 57
example of transforming: 58
contour command: 23, 77
ContourRef: 77
Coordinate System commands
get_cs: 27
get_cs_list: 27
get_cs_name: 28
get_geo_air: 28
new_cs: 27
next_cs_number: 28
number_of css: 28
set_cs: 27
set_cs_name: 28
set_geo_air: 28
Cosine: 5
CounterRef: 23
create_lathe_tool: 30
create_mill_tool: 30
create_proc command: 32
Curve, creation of: 24

D

debug command: 38
Degrees: 5
command: 6, 77
Delete commands
clear_proc_list: 33

88

Index -

delete_geo: 26

delete_op: 35

delete_proc: 32

delete_shape: 26

delete_solid: 30

delete_tool: 31
Deselect, see Selection commands
Dialog

command: 10, 76

creating a: 10, 79

example of defining: 57
Dropdown menus

dropdown_add command: 14

dropdown_excel command: 14

dropdown_new command: 13

dropdown_val command: 14

file_write_vars: 37
fit_curve command: 24

font:

For Statements: 8

Loop Example: 82

frame command: 11, 79

E

Embedding Variables: 6

Excel commands
excel_close: 37
excel_find_cell: 37
excel_get_cell: 38
excel_get_range: 38
excel_open: 37
excel_select_sheet: 37

Exclamation Point: 7

Exponent: 5

extrude command: 28

F

File commands
file_close: 36
file_delete: 37
file_dialog_extension: 16
file_dialog new: 16
file_dialog_show open: 16
file_open: 36
file_read_text: 37
file_read_vars: 37
file_write_text: 37

G

Get commands

Get Feature commands
get_feat_end: 27
get_feat_start: 27
get_feat_type: 26

get_arc_data: 27

get_circle_data: 27

get_geo_air command: 28

get_mtm_data
command: 16
parameters: 40

General MTM: 40

get_num_feat_selected: 26

get_op_data
command: 35
parameters: 47, 48, 50

All Milling Ops: 48

All Operations: 47
Comment String: 47
Lathe Roughing: 50
Lathe Threading: 50, 51

Mill Contour & Pocket Wall: 49

Mill Contour Entry: 49
Mill Drilling: 48

Mill Pocket & Contour: 48
Pocket Entry: 49

Surfacing Entry: 50
Surfacing, 2 Curve Flow: 50
Surfacing, General: 49
Surfacing, Intersection: 50
Surfacing, Lace Cut: 49
Surfacing, Surface Flow: 50
Thread Milling: 49
Turning Ops: 50

@ Index

90

Type: 47
get_op_list: 34
get_op_selected: 35
get_op_status: 35
get_part_data

command: 16
parameters: 40

All Part Types: 40

Mill Parts: 40

Turn Parts: 40
get_post_data

command: 16
parameters: 51

Posting Data: 51

get_proc_data
command: 32
parameters: 42, 45

2 Curve Flow: 44

Contour Entry, Mill: 44

General Process Parameters: 42

Intersection: 44

Lace Cut: 44

Lathe Drilling: 45

Lathe Process: 45

Lathe Roughing: 45

Lathe Threading: 45

Mill Drilling: 43

Milling: 42

Pocket & Contour: 43

Pocket Entry: 43

Surface Entry: 44

Surface Process: 44

Thread Milling: 44
get_proc_list: 32
get_proc_selected: 33
get_proc_status: 32
get_selected_geo_ref: 26
get_selection_list: 25
get_solid_bagged: 30
get_tg data: 31
get_tool_data

command: 31
parameters: 40

All Tools: 40
Lathe Tools: 41
Mill Tools: 40
get_tool_list command: 30
get_tool_selected: 31
get_tool_status: 31
get_util_proc_data
command: 33
parameters: 46
All Stop: 47
Load, Auto Bar Feed: 46
Load, Auto Chuck: 46
Load, Bar Feed: 46
Load, Bar Pull: 46
Load, Manual Chuck: 46
Move ToolGroup: 47
Part Shift, Bar Feed: 46
Part Shift, Bar Pull: 46
Parts Catcher In: 47
Parts Catcher Out: 47
Process Names: 46
SubSpindle In: 47
SubSpindle Return: 47
Unload: 46
get_cs_spindle: 28
Global variables: 4
Goto: 4

If - Then

command: 8

Loop example: 82
Image command: 12, 79
Indents: 3
Input command: 10, 11, 79
Int: 5

L

Label command: 11, 79
Labels: 15
Icase$ command: 8

Index -

left$ command: 7
len command: 7
Line commands
create_line: 20
line: 20
line (in a contour): 23
line_2c: 20
line_2p:19
line_ca: 20
line_copy: 20
line_hp: 19
line_ld: 20
line_pa: 20
line_pc: 20
line_vp:19
Linebreak: 6
Load commands
load_defauts: 14
load_proc: 33
load_process: 33, 78
Local variables: 4
Itrim$ command: 7

)

ok (button) command: 12, 79
on_event command: 13
open_part command: 15
Option argument: 17

M

Machining markers: 33
Machining process, example of defining: 58
Mathematical Operators: 5
message command: 38, 77
mid$ command: 7
mirror_geo command: 25
mirror_solid: 29
MTM commands
get_mtm_data: 16
set_mtm_data: 16

P

Part Data commands
get_part_data: 16
set_part_data: 16

Passing values: 4

percent sign: 7

Point Commands
create_point: 17
point: 17
point_2c:18
point_2l: 18
point_2p:18
point_ca: 18
point_copy: 18
point_get_data: 18
point_lc: 18
point_mirror: 19
point_rotate: 18
point_translate: 18
point_xy: 17
points: 19

Post commands
get_post_data: 16
run_post: 1y
set_post_data: 17

N

new_part command: 15
Next statements: 9
Not Equal: 5

Q

Quote Mark: 7

Radians: 5
command: 6
radio command: 12

o1

@ Index

redraw command: 36, 77 set_mtm_data
Return Values, String: 9 command: 16
revolve (solid) command: 29 get_part_data: 16
right$ command: 7 parameters: 40
rotate_geo command: 25, 77 General MTM: 40
rotate_solid command: 29 set_op_data
rtrim$ command: 7 command: 35
run_exe command: 36 parameters: 47, 48, 50
All Milling Ops: 48
S All Operations: 47
Comment String: 47
Save commands Lathe Roughing: 50
save_defaults: 14 Lathe Threading: 50, 51
save_part: 15 Mill Contour & Pocket Wall: 49
save_part_as: 15 Mill Contour Entry: 49
scale_geo command: 25 Mill Drilling: 48
scale_solid command: 29 Mill Pocket & Contour: 48
Selection commands Pocket Entry: 49
deselect_all_geo: 24 Surfacing Entry: 50
deselect_all_ops: 35 Surfacing, 2 Curve Flow: 50
deselect_all_procs: 33 Surfacing, General: 49
deselect_all_solids: 30 Surfacing, Intersection: 50
deselect_all_tools: 31 Surfacing, Lace Cut: 49
deselect_geo: 24 Surfacing, Surface Flow: 50
deselect_op: 35 Thread Milling: 49
deselect_ops: 35 Turning Ops: 50
deselect_proc: 33 Type: 47
deselect_tool: 31 set_part_data
select_all_geo: 24 command: 16
select_all_ops: 35 parameters: 40
select_all_procs: 33 All Part Types: 40
select_all_solids: 30 Mill Parts: 40
select_all_tools: 31 Turn Parts: 40
select_geo: 24 set_post_data
select_op: 35 command: 17
select_proc: 33 parameters: 51
select_ref: 24 Posting Data: 51
select_shape: 24, 77 set_proc_data
select_solid: 30 command: 32
select_tool: 31 parameters: 42, 45
Selection list: 25 2 Curve Flow: 44
Set commands Contour Entry, Mill: 44
set_markers: 33, 35, 78 General Process Parameters: 42

92

Index -

Intersection: 44
Lace Cut: 44
Lathe Drilling: 45
Lathe Process: 45
Lathe Roughing: 45
Lathe Threading: 45
Mill Drilling: 43
Milling Process Parameters: 42
Pocket & Contour: 43
Pocket Entry: 43
Surface Entry: 44
Surface Process: 44
Thread Milling: 44
set_selection_list: 25
set_solid_bagged: 30
set_tg data: 31
set_tool data
command: 31
parameters: 40
All Tools: 40
Lathe Tools: 41
Mill Tools: 40
set_util_proc_data
command: 33
parameters: 46
All Stop: 47
Load, Auto Bar Feed: 46
Load, Auto Chuck: 46
Load, Bar Feed: 46
Load, Bar Pull: 46
Load, Manual Chuck: 46
Move ToolGroup: 47
Part Shift, Bar Feed: 46
Part Shift, Bar Pull: 46
Parts Catcher In: 47
Parts Catcher Out: 47
Process Names: 46
SubSpindle In: 47
SubSpindle Return: 47
Unload: 46
set_view: 35
set_geo_air command: 28
shrink_wrap command: 36

Sine: 5
sleep command: 38
Solid Boolean commands
solid_intersect: 30
solid_subtract: 29
solid_union: 29
Special Characters: 6
Spindle commands
get_spindle_num: 16
set_spindle_num: 16
Square Root: 5
start command: 23
stop command: 38
String commands: 7
Icases: 8
lefts: 7
len: 7
Itrims: 7
mids: 7
rights: 7
rtrims: 7
trims: 7
ucase$: 8
String Return Values: 9

T

Tabs: 3

Tangent: 5

trace command: 39

Translate commands
translate_geo: 25
translate_solid: 29

trim$ command: 7

U

ucase$ command: 8

Vv

Variable: 4

93

@ Index

W

Workgroup commands
get_wg: 28
get_wg_name: 28
new_wg: 28
set_wg: 28

Y

Yes or No button: 10
yesno command: 10

Z

zoom_view command: 35

94

	Macro Language Reference Guide
	Macro Language Reference
	The GibbsCAM Macro Language
	About the Macro Function
	About This Manual
	About The Macro Language

	Language Description
	Variables
	Flow Control
	Functions, Operators & Expressions
	Math
	Strings
	About Strings
	Commands With Strings

	Conditional Logic
	Commands
	Functions With String Return Values
	User Input Commands
	Dialog Creation Commands

	Comments
	Labels
	Gibbs Part Manipulation Commands
	File Handling Commands
	Part Data
	Post Commands
	Geometry Creation Commands
	A Note About The <Option> Argument
	Points
	Lines
	Circles
	Other Geometry
	Geometry Selection & Transformation Commands
	Geometry Information Commands

	Workgroup & Coordinate System Commands
	Solids Commands
	Tool Commands
	ToolGroup Commands
	Machining Process Commands
	Machining Operation Commands
	View Commands

	Commands To Work With External Data
	Text Files
	Excel Files

	Miscellaneous Commands
	Debugging Macros

	Parameters from GibbsCAM
	Part Data
	MTM Setup Data
	Tool Data
	Process Data
	All Process Types
	Mill Processes
	Lathe Processes

	Utility Process Data
	Operation Data
	All Operation Types
	Mill-Type Operations
	Lathe-Type Operations

	Post Data

	Using GibbsCAM Macros
	Configuring the Custom Macros Menu
	Starting Macros

	Macro Language Samples
	Good Programming Practices
	GibbsCAM Macro Samples
	Quick Samples
	User Input Example
	Geometry Creation Example
	Simple Geometry Selection and Rotation Example
	Machining Example
	Advanced Geometry Create & Transform Example
	Get WG List Info
	Get CS List Info
	Calculate the Extents of Part Geometry
	Backup the Current Part
	Create & Bag Solid Bodies
	Convert A Part Between Inch & Metric
	Save Geometry Data to a Text File
	Run a Post Processor
	Loop Example
	Known Values
	Executing the loop
	Results of 1st loop
	Results of 2nd loop
	Results of the final loop
	The Math

	Full Macro Examples
	First Example - “Macro3”
	Macro3.mac Code
	Macro3.dlg Code
	The Results of the Macro

	Second Example - “Macro2”
	Macro2.mac
	Macro2.dlg
	Macro2Repeats.dlg

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile ()
 /CalCMYKProfile ()
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d530a930f330c8306e57cb30818fbc307f3092884c308f305a3001753b50cf89e350cf5ea6308267004f4e9650306b62913048305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e0074007300200050004400460020006100760065006300200075006e00650020007200e90073006f006c007500740069006f006e0020006d0069006e0069006d0061006c0065002c002000730061006e007300200069006e0063006f00720070006f0072006500720020006c0065007300200070006f006c0069006300650073002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d006900740020006d0069006e0069006d0061006c00650072002000420069006c0064006100750066006c00f600730075006e006700200075006e00640020006f0068006e00650020005300630068007200690066007400650069006e00620065007400740075006e0067002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d006900740020002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020006d00ed006e0069006d006100200065002000730065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d00650064002000640065006e0020006d0069006e0064007300740065002000620069006c006c00650064006f0070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e0020006d0069006e0069006d0061006c0065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200065006e0020006700650065006e00200069006e006700650073006c006f00740065006e00200066006f006e00740073002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006c00610020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e0020006d00ed006e0069006d006100200079002000730069006e0020006600750065006e00740065007300200069006e006300720075007300740061006400610073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f00690073007300610020006f006e0020007000690065006e00690020006b007500760061006e0020007400610072006b006b007500750073002c002000650069006b00e400200061007300690061006b00690072006a006f006a0065006e00200066006f006e007400740065006a00610020006f006c0065002000750070006f00740065007400740075002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0069006e0069006d006100200065002000730065006e007a00610020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006d0069006e0069006d0075006d002000620069006c00640065006f00700070006c00f80073006e0069006e00670020006f006700200069006e00670065006e00200073006b00720069006600740069006e006e00620079006700670069006e0067002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006c00e400670073007400610020006d00f6006a006c006900670061002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020007500740061006e00200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (v7 compatible only)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

